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ABSTRACT. This rescarch investigates snow stability on the eastern side of a small
mountain range in southwest Montana, U.S.A., on one mid-season day and one late-season
day during the 1996/97 winter. Although previous rescarch has addressed snow stability at
smaller spatial scales, this is the first field-based study to investigate snow stability (as
measured by stability tests) over a mountain range in order to better understand its spatial
distribution and the implications for predicting dry-slab avalanches. Using helicopter
access, six two-person sampling teams collected data from over 70 sites on cach of the two
sampling days. Variables for terrain, snowpack, snow strength and snow stability were
generated from the field data, and analyzed using descriptive statistics, correlation analysis
and multiple regression. Results [rom the first sampling day show stability is only weakly
linked to terrain, snowpack and snow-strength variables due to consistently stormy weather
conditions leading up to that day. The second field day’s results demonstrate a stronger
relationship between stability and the other variables due to more variable weather condi-
tions that ranged from periods of sunshine to storms. On both days stability decrcased on
high-elevation, northerly-facing slopes. The data-structure complexity provides insights
into the difficulties faced by both scientists and conventional avalanche forecasters in pre-

dicting snow avalanches.

INTRODUCTION

The purpose of this research is to investigate the spatial vari-
ability of snow stability as a function of terrain at the physical
scale of a small mountain range on two different days (mid-
winter and late-winter) during a snow scason. Knowledge of
regional snowpack conditions is critical for predicting snow
avalanches, which are a significant hazard in mountain
environments. Because snow conditions are not uniform in
complex terrain, an understanding of spatial variations in
snowpack properties is important in snow-avalanche research
and prediction. In spite of known snowpack variations, trad-
itional methods of data collection have focused on single-
location study plots. These data are then extrapolated to
larger areas on the basis of practical experience instead of
scientific understanding. The connections between these point
data and the snowpack properties of the surrounding terrain
must be better understood for accurate avalanche prediction
and explanation of avalanche processes.

Previous work quantified snow stability as a strength-to-
load ratio, where the strength is often measured with a shear
frame and the load includes the gravitational stress of the slab
and can include additional stresses from skiers or others (e.g.
Fohn, 1987; Jamieson, 1995). For this research, snow stability is
defined as the probability of avalanches not occurring, and it
1s quantified by simple results from two in situ snow-stability
tests, the rutschblock (Fohn, 1987) and the stuflblock (Birke-
land and Johnson, 1999). Snow strength is distinct from stability,
and 1s usually measured as resistance to penetration from an
object such as a foot, hand or penctrometer. This work utilized
a Rammsonde (ram) penetrometer to measure snow strength.

Several studies have assessed snow strength or stability at
a specific point (e.g. LaChapelle and Atwater, 1961; Bradley,
1966, 1968; Martinelli, 1971; LaChapelle and Armstrong,
1977). Broadening that approach, jamieson and Johnston
(1995) attempted to link study-plot stability data to skier-
triggered avalanches in surrounding terrain. Recent field
research has focused on the spatial variability of snow,
which is a key consideration for avalanche release, with
studies exploring snow-strength variations (Birkeland,
1990; Birkeland and others, 1995) and snow-stability pat-
terns (Conway and Abrahamson, 1984; Fohn, 1989; Jamieson
and Johnson, 1993; Jamieson, 1995) on individual slopes with
areas on the order of 107 to 10"m* Only two ficld-based
studies have investigated snow-strength variations at a scale
larger than this local scale. Bradley (1970) looked at basal
snow strength on slopes with different aspects over an area
of about 1km” In a study that most closely parallels the
present work, Dexter (1986) quantified snowpack and
snow-strength variables over an area of 10 km?, but did not
measure snow stability. There have been no field-based
stuclies of snow-stability patterns over areas of hundreds of
square kilometers, which 1s the scale of interest to regional
avalanche forecasters.

LaChapelle (1980) discussed the nature of the data used
for avalanche forecasting, and McClung and Schaerer (1993)
classified the variables into three categories (meteorological,
snowpack and stability), with higher classes containing data
that provide less direct evidence for avalanche prediction.
Though terrain is not included, it changes radically in space
and provides the background for the interplay of the other
variables; thus, this research includes terrain as a variable



category. Specifically, in order to explore snow stability at a
previously unstudied scale, this work addresses the following

research questions:
On two given days,
(D how does s r stability vz in relati -y fearra D
(1) how does snow stability vary in refation to terrains

(2) how does snow stability vary in relation to terrain and
snowpack?
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(3) how docs snow stability vary in relation to terrain, snow-
pack and snow strength?

Answering the above increasingly complex questions will
help to identity the data requirements for assessing stability
patterns. Hypothetically, linkages between snow stability
and terrain exist, the addition of more specilic snowpack
factors will improve the predictability of stability patterns,
and these relationships change over the course of the season.

RESEARCH METHODOLOGY
Environmental setting

The area chosen for study is the Bridger Range, located 5 km
northeast of Bozeman, Montana, U.S.A. (Iig. 1). Relatively
simple topography, abundant snowfall and extensive ava-
lanche terrain make the range an ideal location for this
rescarch. The Bridger Range is in the intermountain ava-
lanche climate zone {LaChapelle, 1966; Armstrong and
Armstrong, 1987; Mock and Birkeland, 2000), and consists of
a single ridge of mountains approximately 40 km long and
10 km wide, with peaks up to 2900 m that rise 1400 m above
the valley floor. The snow climate, steep topography and lack
of significant vegetation in the higher elevations combine to
create extensive and dangerous avalanche terrain, with an
estimated 1000 avalanche paths in this range of about
250 k.

Data collection

A helicopter shuttled six two-person sampling teams around
the Bridger Range, expediting data collection and improving
safety. Teams took part in pre-season training to standardize
data-collection techniques. Sampling locations were biased to
the castern side of the range due to problems with unsafe
low-elevation landing zones on the west side, and difficulty
in getting sampling teams out if the sampling day was shut
down midday due to bad weather. On the east side of the
range, objective hazards (such as cliff bands) and avoiding
Bridger Bowl Ski Area further reduced the area considered
for sampling. A planimeter was used to roughly determine
that about 35% of the total avalanche terrain in the range
was acceptable for sampling. This terrain was accessible from
12 reasonable ridge-top landing zones.

Complete randomization of sampling locations resulted
in unacceptably dangerous sampling routes. Therefore, I took
carly-scason photographs of all slopes and chose reasonably
safe routes from an avalanche-hazard standpoint, but routes
that allowed the teams to sample a variety of aspects and ele-
vations on slope angles typical of avalanche starting zones
(generally 30-45° (Perla, 1977)) while traveling cfficiently.
This sampling scheme allowed for a reasonable stratification
of the elevations and aspects represented by each site, and
took most of the sampling-location decision-making out of
the hands of individual team leaders, while allowing active
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Fig. 1. Hillshade map of the Bridger Range, located approxi-
mately 5 km northeast of Bozeman, Montana. Twelve ridge-top
helicopter landing zones allowed teams to sample more than 70
locations (represenied by the white dots ) each day. Map gener-
ated from U.S. Geological Survey 50 m digital elevation models

with a vertical exaggeration of two.

decision-making in terms of team safety. leams sampled
nearly the same locations on both sampling days, though
some sites had to be slightly relocated to avoid ski tracks or
unnecessary exposure to avalanche hazards on the second
sampling day (Iig. 1).

Adverse weather during the 1996/97 winter limited the
number of available helicopter sampling days. 1 selected
sampling days based on weather, sampling-tcam and heli-
copter availability, and a snowpack unstable enough to pro-
vide reasonable stability-test results, but not so unstable that
the sampling teams faced extremely dangerous avalanche
conditions. The two sampling days chosen were 6 February
and 2 April, and on each day we safely collected data from
over 70 points.

Data variables

At each sampling location, teams collected data establishing
variables describing terrain characteristics, general snow-
pack properties, snow strength and snow stability (Table 1),
with an emphasis on [ast, consistent and reliable measure-
ments. Terrain variables include location within the mountain
range (in UTM meters north and east), clevation, distance



Table 1. Variable codes, descriptions, transformations and normalized variable codes for terrain, snowpack, snow-strength and

snow-stability variables

Variable code Description Transformation Normalized code
6 Ieh. 2 Apr.
Terrain
loc e UTM" meters east (m) uT® ND*
loc n UTM" meters north (m) ND ND
elev Elevation (m) ND ND -
dis rdg Distance from ridge (m) ND ND
RI Radiation index? (degrees) ND ND
ang Slope angle (degrees) ND ND -
Snowpack
dpth Snow depth (m) ND ND -
30 Snow temp. 0.30 m below surface (°C) ND (£30)*" t30tf
tgrad Avg. temp. gradient (*Cm ™Y ND (tgrad)*® tgrad tf
Snow strength
ram drp Initial ram drop (m) ND ND
ram avg Avg ram hardness, upper 1.50 m (N-m b (ram avg) iz ND ram avg sqrt
Snow stability
df sb Failure depth of first stuffblock failure (m) ND ND
df rb Failure depth of lowest rutschblock score (m) (df rb)"? (df rby"? df rb sqrt
sh Stuffblock drop height (m), first stuffblock failure ur urT -
rb Lowest rutschblock score (l‘b)z ND rb sq
sb low rb Stuffblock drop height (m), stuffblock failure assoc. with rb uT UT o
FIsb Failure index (FI) of sb? (FIsb)** uT FI sb tf
FIsb low rb FIof sb low rb* ND ND -
TFI Total failure index? (TFD) ™ (TFT)? TFI sqrt

Universal Transverse Mercator.

due to excessive zero values).

See text for description.

from the ridge (which quantifies the distance from a major
wind barrier), a radiation index (measured in degrees away
from true north) and slope angle. Investigators measured
slope angle and aspect with inclinometers and compasses,
and ascertained clevation and location with Rockwell PLGR
Global Positioning Systems.

Snow depth and snow temperature 0.30 m beneath the
snow surface quantified general snowpack characteristics.
Sampling teams measured depth with a folding ruler or an
avalanche probe, and assigned areas with depths exceeding
4.5-4.8 m a minimum value to avoid overly time-consuming
digging. Seven such sites existed on the first day and ten on
the second day, for a total of about 10-14% of all depth meas-
urements; thus, the relationship of depth with other variables
should be viewed with caution, especially in areas of deeper
snowpack. We measured snow temperature to the nearest °C
at 0.30 m below the surface, which is below the level of diur-
nal fluctuations (Armstrong, 1985). The average temperature
gradient was computed by dividing the subsurface tempera-
ture by the depth from that thermometer to the ground, and
assuming that the basal temperature was constant at 0°C.
Though this latter assumption is not perfect, it is a reasonable
approximation for this study area, and this technique for
computing average temperature gradient has been used in
previous research (Armstrong, 1985; Dexter, 1986).

Using ram penetrometers, sampling teams established
two strength variables: (1) surface snow strength, and (2)
average snow strength of the top 1.5 m of snow. The initial
drop of the ram quantified surface snow strength, while aver-
age ram strength was computed by calculating the average
ram hardness of the upper 1.5 m of the snowpack. Time con-

Unable to transform (loc e on 6 February almost passes the test for normality without transformation; other variables that could not be transformed were

Normally distributed (does not significantly deviate from normality as shown with a Kolmogorov-Smirnov one-sample test at p < 0.05).

straints dictated that we only collect average ram hardness of
the upper 1.5 m, and not a complete and detailed profile.
Several measures assessed stability, including the rutsch-
block test (I'shn, 1987), the stullblock test (Birkeland and
Johnson, 1999), the depth to failure (representing the slab
depth of potential avalanches) and stability indices based
on stuffblock results and failure depths. All stability vari-
ables focus on slab avalanches. Rutschblocks test a relatively
large sample of snow and have been used in previous
research (Fohn, 1989; Jamieson and Johnston, 1993). The
stuffblock test, which involves dropping a nylon sack filled
with 4.5 kg of snow onto an isolated column of snow (0.30 m
square) from known heights until the weak layer fractures,
is more casily quantifiable and provides reasonably consis-
tent results between observers (Birkeland and Johnson,
1999). Sampling teams conducted one rutschblock and one
stuffblock test at cach sampling location. Depth to failure is
another important variable, since slab depth is a factor in
determining the amount of snow released in an avalanche.
In order to assess the combination of the depth to failure and
the weak-layer strength together, a dimensionless stuffblock
failure index (FI) was developed by dividing stuffblock drop
height by depth to failure:
sb
FI= TR (1)

where sb is the stuffblock drop height (m) and df is the depth
to failure (m) of a specific failure layer. Thus, smaller values
of this index suggest more dangerous conditions. To objec-
tively analyze the most significant failure at cach location, I
considered the lowest rutschblock score for a location to be



the most significant failure and used the associated stuffblock
drop height and depth to failure as two primary variables.
Stability data are hard to compare when various locations
have different numbers of failure plancs in the snowpack. For
example, how comparable is a site with a single stuffblock
020 m that is 0.25 m down with another site that
has stuffblock failures of 0.10m at 0.15m and 030m at
0.45m? To facilitate such comparisons, a dimensionless total

failure of

failure index (TFI) was defined. This index was developed
such that the following factors result in lower TFIs: (1)
decreasing stufﬂ)lo(k drop height, (2) increasing failure

depth, and increasing number of failure planes. In

essence, THI indexes av alanche danger, where avalanche
danger is a rough measure of the probability, frequency and
size of dry-slab avalanches. Avalanche danger increases, and
TFI decreases, with increasing numbers of failure planes
because of the potential to trigger an upper snowpack layer
which could overload the slope and trigger a lower layer,
resulting in a much larger avalanche. Realizing that the vari-
ables do not necessarily interact in the manner specified, but
also realizing the value in different indices (e.g. the widely
used Palmer Drought Index (Palmer, 1965; Karl, 1986; Cook
and others, 1999) ), TFI is defined as follows:
Sb| Sbg SbN
df } dfy et dfy @)
N2 ’ -
sby are the stuffblock drop heights (m)
for the first through Nth failures, df), dfs, ...
depths to failure associated with each stuftblock failure (m),
and N is the total number of failures. N is squared to empha-
size the importance of multiple failure layers, allowing TFI

TFI =

where sby, sbo, ...,
, df v are the

to converge more rapidly to zero as the number of failure
planes increases.

Data analyses and mapping

I used descriptive statistics to make comparisons between the
two sampling days: non-parametric Spearman rank-order
correlations to quantify relationships between cach variable
pair; and forward stepwise least-squares multiple regression
analysis to demonstrate how well the dependent stability vari-
ables could be predicted by the multivariate interaction of the
independent
sional spacefattribute data matrix for each sampling day, with

rariables. Data analyses utilized a two-dimen-

the rows representing the sampling locations and the columns
representing the terrain, snowpack, snow-strength and snow-
stability variables described in Table 1. All variables were
tested for normality using the Kolmogorov—Smirnov one-
sample test (Massey, 1951). Most variables do not significantly
deviate from normality at p < 0.05, and a varicty of transfor-
mations were used to normalize those that did significantly
deviate from normality (Table 1). Transformations were based
on trial and error, and an excessive number of zero values
made normalizing some variables impossible.

Rutschblock scores (rb) are problematic for statistical
tests because they are ordered data. Stuffblock tests also
result in ordered data, but since stuffblock results relate to a
linear scale of the surface impact energy necessary to cause
failure (Birkeland and Johnson, 1999), the stuftblock is better
suited to parametric statistical tests than the rutschblock.
Thus, care must be taken when interpreting parametric stat-
istical results related to stufthlock drop heights, and special
care must be taken when interpreting rutschblock results.

Because the data included variables that could not be nor-
malized, I took a conservative approach and when possible
used non-parametric tests that did not rely on assumptions of
normality. While conducting non-parametric tests, all non-
transformed data were used, and the normalized data and
more stringent significance testing were used with non-normal
variables for multiple regression analyses. In addition, multi-
ple regression is considered to be robust with respect to devi-
ations from normality, especially as sample sizes approach 100
(StatSoft, 1994). Since this sample size is fairly large (N of
approximately 70), using regression is appropriate.

When performing forward stepwise least-squares regres-
sion analyses, specific criteria determined model “validity™
Though I chose the level of explained variance of the depen-
dent variable, the other criteria simply assured the models
met the basic assumptions of regression. These criteria
included the following: (1) the model must be significant
(p <0.05, orp < 0.025 for dependent variables that are either
ordered or not normally distributed); (2) the model must ex-
plain at least 15% of the variance of the dependent variable;
(3) all partial regression coeflicients must be significant (p <
0.05); (4) the shared variance of any two independent vari-
ables must be <50%, thereby insuring that the independent
variables are relatively independent and obviating problems
associated with multicollinearity; (5) significant autocorre-
lation does not exist (Durbin—Watson statistics generally
>1.5); and (6) the residuals must be normally distributed.
Pearson product-moment correlations quantified the shared
variance of each variable pair. Results indicated that loc n
and loc e were strongly correlated, with R = 0.92, and clev
and dis rdg shared just under 50% of their variance, with
I = 0.68. On the second sampling day the transformed vari-
ables t30 tf and fgrad tf were also highly correlated (R =
0.78). Thus, on both days I ran models first with loc n and
then with loc e, and chose the model that explained more of
the variance of the dependent variable. Likewise, only elev
or dis rdg was used in each model, with the superior model
being chosen. Finally, on the second day, only ¢30 or tgrad
was used as an independent variable.

GRID module
of the geographic information system software program

Maps for this study were created using the

Arc/Info running on an IBM workstation. Using 30m
digital elevation models, hillshade maps and computed grids
representing elevation, radiation index, slope angle, location
east and location north at each gridpoint were generated.
These grids allowed the creation of maps representing statis-
tical relationships using ArcView.

RESULTS

Differences between sampling days

Descriptive statistics from both sampling days for snowpack,
snow-strength and snow-stability variables show how the
sampling days differed (Table 2). Mean values are reported
for most variables, and median values are reported for ordered
data like rutschblock and stuffblock results. In essence, the
snowpack on the second sampling day was deeper,
and stronger than on the first day. Although snowpack and
snow-strength properties changed dramatically, snow stability
is similar, with four of the eight stability variables showing no
difference, one variable indicating deeper slab depths, and the
other threc showing slightly more stable conditions.

warmer



Table 2. Descriptive stalistics for snowpack, snow-strenglh and snow-stability variables on both sampling days

6 February

Mean or median”  SD or UQ, LQ"

Range (max, min)

2 Aprid
SDor UQ, LQ"

e .
Mean or median Range (max, min)

Snowpack

dpth (m)” 259 0.81 4.80,0.68 3.06 0.87 4.75,0.65
130 (°CyY 6.5 2.3 =20, ~13.0 27 24 0.0, -10.0
tgrad (°Cim™H' 2.6 1.3 10.2, 0.0 1.1 1.6 114, 0.0
Snow strength
ram drp (m) 0.35 0.13 0.71,0.02 0.37 0.19 0.70, 0.0
ram avg (Nm 57 0.148 0.097 0.513, 0.029 0.209 0.099 0.519, 0.067
Snow stability
df sb (m) 0.22 0.11 0.90,0.03 0.24 0.19 1.05,0.03
df b (m)" 0.30 0.17 0.90, 0.03 0.36 0.16 1.05, 0.05
sbh (m) 0.10 0.20, 0.10 0.60, 0.0 0.20 0.30,0.20 0.70, 0.0
rb 5 6,3 7, 5 7,4 7,1
sh low rb (m) ¥ 0.10 0.30, 0.10 0.70, 0.0 0.20 0.40,0.20 0.70,0.10
FIsb 0.567 0.525 3.0,0.0 0.825 1.07 8.0, 1.0
FIsb low rb 0.660 0476 3.0,0.0 0.835 0424 2.5,0.22
TFI' 0450 0.354 2.0,0.0 0498 0.434 2.50,0.06

Notes: SD, standard deviation; UQ, upper quartile; LQ, lower quartile.

Medians, upper quartiles and lower quartiles are listed for ordered variables {sb, 1b, and sb low 1b), and means and standard deviations are listed for all

other variables.

+

Means are significantly different (p <0.03) between the sampling days. Diflerences of means were tested using the ¢ test for normally distributed data (dpth,

ram drp, df sb and FI sb low rb), and the Wilcoxson matched-pairs test for non-normal dara (130, tgrad, vam avg, df vb, sh, vb, sb low rb, FI sh and TFI).

Relationships between variable pairs

6 February

Though there are several significant correlations between slab
depth and the other variables on the first sampling day, the
data are more remarkable for the lack of significant correla-
tions between snow stability and terrain, snowpack and snow-
strength variables (Table 3). However, a few significant corre-
lations exist. The relationship between the first stuffblock fail-
ure and elevation suggests that higher elevations had slightly
more unstable conditions. The significant positive correlation
between the stuffblock associated with the lowest rutschblock
score and snowpack temperature indicates that arcas with
warmer snowpack temperatures appear to be slightly more
stable than colder arcas, while the positive correlation between
the first stuffblock failure and ram drop shows that stability
increases as snow surface softness increases.

2 April
The correlation matrix for the second sampling day shows
that terrain, and specifically elevation, 1s much more closely

linked to stability than on the first day (Table 4). In fact, elev
is significantly negatively correlated to every stability vari-
able except df sh. Thus, slab depth is decreasing at higher ele-
vations, as is weak-layer stability. However, weak-layer
stability is decreasing faster than slab depth, resulting in
decreasing failure indices with icreasing elevation. Distance
to the ridge is positively correlated to several stability vari-
ables, indicating increasingly unstable conditions closer to
the main Bridger ridge. Another interesting relationship is
the significant positive correlation between the failure indices
FIsb low rb and TFI, and the terrain variable RI, demon-
strating more stable conditions on southerly aspects. Thus,
the spatial pattern of instability on this sampling day is that
higher-elevation, northerly-facing slopes have the most un-
stable conditions.

On 2 April there is also a strong relationship between
snowpack and stability variables (Table 4). Only df rb is not
significantly correlated to at least two of the variables. In gen-
eral, weak-layer strength decreases with increasing depth and
increasingly cold temperatures, a result mirrored in the rela-
tionship between the failure indices and the snowpack vari-

Table 3. Spearman rank-order correlations between snow stability and lerrain, snowpack and snow strength on 6 February 1997

Stability variables Terrain variables

Snowpack variables Snow-strength variables

loce locn elew dis rdg RI ang dpth 130 lorad ram drp ram avg

Slab depth

df sb 044 = -044 -0.19 -0.28 0.06 0.29 -0.28 0.30 0.17 0.59 ~0.36

df rb 0.15 -0.24 -0.28 0.00 -0.15 0.20 -0.22 0.34 0.21 0.30 -0.14
Stability of weak layer

sb 0.16 -0.14 -0.17 -0.24 0.13 0.17 -0.19 0.20 0.12 0.34 ~(0.14

rb - =012 -0.05 -0.15 0.04 0.19 0.13 0.1 0.23 -0.15 ~0.10 0.02

sb low rb 0.02 0.10 -0.31 0.08 0.23 0.14 -0.17 0.31 -0.17 0.14 -0.04
Stability indices

FIsb 0.11 0.10 -0.05 —0.14 0.10 -0.07 -0.05 0.03 0.03 0.02 0.11

FIsblow rb -0.09 0.07 -0.26 0.11 0.20 0.09 0.12 0.15 0.03 0.04 0.11

TFI 0.08 0.15 0.13 0.05 0.17 0.03 ~0.14 0.02 -0.02 -0.04 0.09

Note: Correlations in bold are significant at p < 0.05.



Table 4. Spearman rank-order correlations belween snow stability and lerrain, snowpack and snow strength on 2 April 1997

Stability variables Terrain variables

Snowpack variables Snow-strength variables

loce locn elev dis rdg RI ang dpth t30 lgrad ram drp ram avg

Slab depth

df sb 0.21 -0.28 -(.18 -0.31 0.07 0.17 -0.24 0.29 -0.23 0.24 -0.30

df rb 0.18 -0.19 -0.28 0.05 0.00 0.09 ~0.14 0.07 -0.07 0.35 -0.42
Stability of weak layer

sh 0.14 ~0.13 -0.32 -0.01 0.18 0.09 -0.41 047 —-0.34 -0.27 ~0.11

rb ~0.12 0.11 —-0.39 0.22 0.22 ~0.15 -0.31 0.36 -0.29 -0.43 0.04

sh low b 0.09 0.00 -0.49 0.29 0.17 0.10 -0.31 0.33 -0.24 -0.24 -0.15
Stability inclices

FIsb 0.04 ~0.01 -0.34 0.30 0.21 -0.08 ~-0.30 0.44 -0.34 -0.62 0.09

Flsblow rh 0.01 0.12 -0.38 0.35 0.28 -0.23 -0.20 0.37 -0.30 -0.57 0.08

TFI 0.10 ~0.12 -0.41 0.11 0.31 0.04 0.40 0.56 -0.45 -0.54 0.07

Note: Correlations in bold are significant at p < 0.05.

ables. The correlation between stability and tgrad is negative,
indicating that areas with larger temperature gradients are
more unstable. As with the comparisons with terrain, the rela-
tionship of stability variables to snowpack variables results in
a fairly clearly defined pattern, with areas with deeper and
colder snowpacks having more unstable conditions.

Finally, on this sampling day there is a significant rela-
tionship between ram drp and all of the stability variables,
while ram avg is only significantly related to slab depth,
with areas of stronger snow showing thinner slab depths
{Table 4). The initial ram drop is positively correlated to slab
depth and negatively correlated to both weak-layer stability
and the failure indices, indicating that, on this particular
day, areas with softer surface snow had more unstable con-
ditions. A scatter plot of TFT and ram drp shows this rela-
tionship, and is typical of scatter plots of many of the other
data-variable pairs (Fig 2). Though a relationship exists,
considerable scatter is evident, demonstrating the import-
ance of using additional variables for stability prediction.
Consequently, a multivariate approach was taken during
subsequent multiple regression analyses.

Predictive modeling using multiple regression analysis

Forward stepwise least-squares multiple regression was used
for predicting snow stability given terrain, snowpack and
snow-strength variables. Initially, attempts to predict the
various stability variables used only terrain as the indepen-
dent variables. Subsequent analyses added snowpack and
then snowpack and snow-strength data to determine if these
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Fag. 2. Scatter plot of the TFI vs ram drop for data_from 2
April, with a least-squares fit line.

additional independent variables improved the predictability
of the models. On 2 April one data point repeatedly arose as a
significant outlier with inordinate leverage (as measured by
Cook’s distance (Statsoft, 1994)) on the regression models. At
this site the weakest (and only) failure occurred at a slab
depth of 0.05 m and a stuffblock drop height of 0.40 m, result-
ing in a TFI of 8, with the next nearest TFI being 2.5 and
most TFIs being <. This result is suspect, since normally by
the time the stuffblock has been dropped from 040 m it has
compressed the snowpack well below 0.05m. Thus, the 2
April dataset for regression did not include this case.

6 February

No valid stability models could be generated using terrain
data as the independent variables for 6 February. Adding
snowpack to terrain as the independent variables, and select-
ing the stability variables as the dependent variables, pro-
duced a single valid regression model that explained just
over 20% of the variance in FIsb low rb using clevation
(standardized partial regression coelficient = —043), subsur-
face temperature (standardized partial regression coefficient
= 0.35) and location cast (standardized partial regression
coefficient = —0.53). The model implies that stability is
decreasing at higher elevations, colder subsurface snow tem-
peratures and more easterly locations within the Bridger
Range. Adding snow strength to the independent variables
did not change the regression model for FI sb low rb, but it
did result in a valid model for the transformed variable
TFI sqrt. This model explained 15% of the variance of the
dependent variable, but was based on different variables
than those used to predict FI sb low rb, with location north
(standardized partial regression coeflicient = 040), radi-
ation index (standardized partial regression coefficient =
0.35) and initial ram drop (standardized partial regression
coeflicient = 0.40) brought into the equation. The standard-
ized partial regression coeflicients show that all three vari-
ables are similar in their relative importance in predicting
TFI sqrt, and implies that stability increases in a northerly
direction, on more southerly-facing slopes and in areas with
softer surface snow. However, lack of other valid models and
the low R? values indicate the links between stability and the
independent variables are relatively weak on this particular
sampling day.

2 April
In contrast to 6 February, successful models were generated
for several stability variables using only terrain as the inde-



Table 5. Standardized partial regression coefficients and coefficients of determination ( adjusted R? ) on 2 April 1997 for multiple
regression models run with dependent stability variables and independent terrain variables (regression No. 1), independent terrain
and snowpack variables (regression No. 2) and independent terrain, snowpack and snow-strength variables ( regression No. 3)

Stability variables Terrain variables

Snowpack variables Strength variables

loce locn elev dis rdg RI ang dpth 130 if lgrad tf  ramdrp ramavg  Adj. R?
Regression No. 1 (terrain)
Weak-layer stability
sb -
rb ~0.4 ~0.54 0.23 0.28
sb low rb -0.46 0.21
Stability indices
FIsb -
FIsblow rb 0.36 0.35 0.20
TFI sqrt 0.32 0.30 0.20
Regression No. 2 ( terrain/snowpack )
Weak-layer stability
sb 0.26 -0.36 ~0.44 033
rb 041 0.54 0.23 0.28
sb low rb 0.24 047 -0.30 0.29
Stability indices
FIsb 0.27 -0.60 0.24
FI sblow rb 0.38 -0.55 0.22
TFEI sqrt -0.32 0.31 0.20
Regression No. 3 ( lerrain/snowpack/strength )
Slab depth
df sh -0.36 -0.33 0.38 0.22
df rb sqrt -046 0.52 0.33
Weak-layer stability
sb 0.26 -0.36 —044 0.33
rb 041 -0.54 0.23 0.28
sb low rb 0.24 ~047 030 0.29
Stability indices
FIsb ~0.23 ~0.54 043
FIsblow rb 0.28 -0.34 ~0.39 0.33
TFIsqrt -0.31 0.25 ~0.41 047

Note: Coellicients of determination marked with a “~”
pendent variables on 2 April (Table 5). Valid models were
generated for rb, sb low rb, FI sb low rb, and TFI, though
no model explained >30% of the variance of the dependent
variable. Elev appeared in three of the four models and was
the most important variable in each model for predicting
stability; the model that did not include elev used dis rdg,
which is highly correlated to elev. Negative standardized
regression cocfficients for elev demonstrate decreasing
stability at higher elevations. Three of the four models also
used RI, with the positive partial regression coeflicients
indicating more stable conditions on sunnier slopes. Finally,
one model used loc e in addition to elev and R, to predict
rb, showing more unstable conditions in areas farther east
in the study area. In short, the regression models all empha-
size decreasing stability at higher elevations and on more
northerly aspects.

Of the models produced, the model predicting rb is inter-
esting because this study represents the first regional-scale
quantification of this popular measure of snow stability.
Though results should-be viewed with caution due to the
ordered nature of rutschblock data, a closer look at this model
1s warranted. The terrain-based equation, which explains
28% of the variance of rb is:

rb =271 — (4.95 x 107 loce — (6.83 x 107%) elev
+(9.14 x 107*) RI,

where rb is the lowest rutschblock score, loc e is the location
in UTM meters east, elev is the elevation (m) and RI is a

radiation index based on aspect (where RIis the number of

indicate that there was no valid model.

degrees away from north). Since this model is terrain-based,
a visual representation can be mapped over the Bridger
Range using a digital elevation model (Fig. 3). A limitation
of this map is that it includes more terrain than was actually
sampled, such as the terrain west of the main ridge, so the
statistical relationship may not hold for all the terrain
mapped. Still, the obvious effect of elevation is apparent
since the most unstable conditions (represented in black)
are found close to the main ridge.

The terrain-based model for TFI is also interesting,
since TFI is an index of the overall stability of a particular
location, and this study represents the first quantification of
such a measure at the regional scale. The equation, which
explains 20% of the variance of the transformed TF1, is:
TFIsqrt = 2.14 — (6.44 x 107 ") elev + (1.89 x 107*) RI,

(4)
where TFI sqrt is the square root of the TTL, elev is the
elevation (m) and RI is a radiation index based on aspect
(where RI is the number of degrees away from north).
Similar to the representation for rb, a map of TFI sqrt is
dominated by the effects of elevation, with the highest eleva-
tions along the main Bridger ridge demonstrating the most
unstable (represented by black) conditions (Fig. 4). This
map, however, shows the effects of aspect more clearly than
the map for rb, in which aspect and location east share sec-
ondary importance in predicting stability.

Including snowpack as independent variables results in
valid regression models for all stability variables except slab
depths, with 20-33% of the variance of the dependent vari-
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Fig. 3. Map of the statistical velationship between lowest
rutschblock score (1) and terrain. The darkest areas on the
map represent the smallest rutschblock scores (and most un-
stable conditions ), while the whitest areas represent the largest
rutschblock scores ( and most stable conditions ).

ables explained (Table 5). With snowpack added, four of the
six models brought in thevariable loc n. Though less import-
ant than other variables in the model, the positive standard-
1zed regression cocfficients for loc n indicate that the areas

farther north had increasingly stable conditions. Three of

the six models (for sb, FI sb and FI sb low rb) included the
transformed variable ¢30 tf, and in every case this was the
most important variable in the model. Negative standard-
ized regression coefficients again emphasize more unstable
conditions in areas with colder snowpacks. Two models (for
sb and sb low rb) used dpth as a predictor of stability. In
both cases, stability decreased with increasing depth.

Fiathed ss |

Ross Pass |

N |
1:175,000

Fig 4. Map of the statistical relationship between the trans-
Jormed TFI ( TFIsqrt) and terrain. The darkest areas on the
map represent the smallest values of TFI sqrt ( and most un-
stable conditions ), while the whitest areas represent the largest
values of TFI sqrt (and most stable conditions ).

Adding snow-strength variables into the regression
models resulted in valid models for every stability variable,
with models explaining anywhere from 20% to almost 50%
of the variance of the dependent variable (Table 5). Five of
the eight models used ram drp as an independent variable,
and in every case ram drp was the most important variable
for predicting the variance of the dependent variable. No
two models used the same independent variables, and only
dis rdg, ang and ram avg were not used in any model. The
usage of the various independent variables was remarkably
even. Of the eight models, ram drp was brought into five of
them, t30 tf and dpth were each brought into four models,



elev and loc n were each brought into three models, while
loc e, RI and tgrad tf were each used in one model.

The model for TFI sqrt explained more of the variance
of the dependent variable than any other model. The follow-
ing model explains 47% of the variance of TFI sqrt:

TFI sqrt = 1.29 — (6.06 x 107%) ram drp
—(1.01 x 107%) dpth (5)
+ (1.02 x 107" tgrad,

where ram drp is the initial ram drop (m), dpth is the total
snow depth (m) and #grad is the average temperature
gradient (°Cm"). This is the first quantitative representation
of a stability index over an area the size of the present study.

As with all the models listed in Table 5, the validity of
LEquation (5) was further checked by examining the residuals.
These were normally distributed, as tested by the Kolmogorov—
Smirnov one-sample test (Massey, 1951). Further, no signifi-
cant relationship exists between the residuals and several
other variables such as distance along the ridge, distance
from the ridge, radiation index and elevation (Tig. 5). If such
relationships existed, they could indicate a locational bias of
the model. Since they did not, this further strengthens the
validity of this model.

Regression results on 2 April strengthen previous conclu-
sions that the most unstable conditions existed on high-eleva-
tion, northerly-facing slopes with deep, cold snowpacks that
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Fig. 5. Restdual analysis_for the regression model predicting
TFIsqrt ( Equation (5) ) further demonstrates the validity of
the model: (a) The residuals approximate a normal distribu-
tion, and passed the Kolmogorov—Smirnov test for normaluty.
(b) The residuals were plotted against several variables, with
no significant relationships observed. As an example, here they
are plotted against elevation with a least-squares fit line

( Pearson’ r = 0.038).

had weaker surface snow. There is also evidence that condi-
tions were more unstable in the eastern and southern parts of
the Bridger Range.

DISCUSSION

The snowpack on the second sampling day was deeper,
warmer and stronger than on the first day (Table 2). Such
trends are commonly observed from mid- to late season in
the mountain snowpack, and have been documented pre-
viously (e.g. Armstrong and Ives, 1976; Dexter, 1986). Inter-
estingly, although snowpack and snow-strength properties
changed dramatically between the two days, snow stability
is similar, with four of the eight stability variables showing
no difference, one variable indicating decreased stability
(df rb), and the other three showing slightly more stable
conditions. The significant changes in snowpack and snow
strength, without dramatic changes in stability, illustrate
the dynamic nature of stability changes in comparison to
the more slowly changing snowpack and strength variables.

On 6 February only a subtle relationship existed between
snow stability and terrain, snowpack and strength variables.
There are few significant correlations between variable pairs
(Table 3) and few valid regression models. The nature of the
relationships can largely be explained by the weather lead-
ing up to the sampling day; a more detailed climatology of
the winter is included in Birkeland (1997). In essence, the
weather from November to February consisted of prolonged
storms with consistent snowfall and wind. lew significant
weak layers existed in the snowpack, and differences between
north and south aspects were minimal since the sun rarely
shone. Weather conditions in the early season mimicked a
more coastal avalanche climate, with more snow, less sun
and fewer weak layers than are typical for the Bridger Range.
These relatively uniform weather conditions led to similarly
uniform stability conditions, as reflected in the data. However,
in spite of the relative homogeneity of the snowpack, some
subtle patterns do emerge from the data, with more unstable
conditions on high-elevation, northerly-facing, colder slopes.

By 2 April more changeable weather conditions prevailed
prior to sampling (Birkeland, 1997). Though Ithbruary and
March were stormy, there were more sunny periods inter-
spersed with storms that dropped increased snowfall at upper
elevations. Further, the sun aflected southerly-facing slopes
more dramatically by April because of increased insolation
compared to earlier in the season. These weather conditions
created increasingly discernible differences in the snowpack,
as reflected in the data. There are statistically significant cor-
relations between many variable pairs (Table 4), and numer-
ous valid regression models (Table 5). Results confirm that
increasingly unstable conditions existed at higher elevations,
on more northerly aspects, in areas with deeper, colder snow
and in areas with softer surface snow on 2 April.

Though the statistical strength of snow stability’s rela-
tionship with terrain, snowpack and strength variables var-
ies between the sampling days, the relationships observed
are surprisingly similar. On both days more unstable condi-
tions existed in the southerly and easterly parts of the moun-
tain range, and on upper-elevation, northerly-facing slopes.
Quantifying this latter relationship is interesting, since ava-
lanche forecasters have long suspected and observed more
unstable conditions on shady, high-elevation slopes. Not
only are higher-clevation arcas exposed to more wind,



which implies that there is more wind loading, deeper slabs
and more load on the weak layer, but they are also colder.
Snow changes form quickly, but the rate of change is highly
temperature-dependent, so weaker layers tend to persist
longer in those colder locations. However, it is important to
remember that this research merely provides two quick
snapshots of an extremely dynamic system. Though more
unstable conditions are often observed at higher elevations
and on more northerly aspects, avalanche forecasters often
face atypical conditions where stability patterns are differ-
ent and may even change on a daily basis. For example,
Schweizer and others (1998) documented a layer of surface
hoar that formed only within a specific elevation range,
thereby creating dangerous instabilities at mid-clevations
and more stable snowpacks at higher elevations.

Regression models generated for all eight dependent sta-
bility variables on 2 April explained 20~50% of the variance
of any one variable. Much variance remains unexplained,
and may be due to a number of factors. First, small-scale ter-
rain variability undoubtedly introduced unexplained vari-
ance into the data. Second, though I made every effort to
limit differences between sampling teams, unavoidable obser-
ver inconsistencies undoubtedly added to the variability and
inexact nature of the models. Finally, some of the data rela-
tionships may not be strictly linear. I'or example, though
depth typically increases with elevation, high-elevation
wind-exposed areas (that are also prone to avalanching)
may have either extremely shallow snowpacks (areas of wind
scour) or excessively deep snowpacks (areas of wind depos-
ition). In spite of the limitations, the generation of valid
regression models for snow stability on a particular day is
encouraging given such a large and diverse area. Still, it is
clear that such modeling cannot be used for practical ava-
lanche forecasts in the near future due not only to the unex-
plained variance and limitations of our understanding of the
system, but also to the excessive data requirements and the
difficulty in collecting such data from potentially dangerous
avalanche terrain.

One interesting result from this research is that the
numerous regression models generated for the 2 April data
cach used different inputs to predict stability when given the
same array of independent variables (Table 5). The stability
variables are similar, and one would expect that the models
generated to predict them would be similar. The differences
between the models emphasize the underlying data com-
plexity, and some of the difficulties that avalanche scientists
face when trying to understand and predict avalanches.
When LaChapelle (1980) asked various avalanche fore-
casters with similar forecasting success rates to identify the
data they used for avalanche forecasting, and which data
were the most important, they chose different variables
and weighed them differently. He concluded,“There is more
than one way to predict avalanches given conventional
means”. The data from this research suggest that, quantita-
tively, there is more than one way to predict snow stability.
The low coefficients of determination also indicate that
many more complicating factors than the ones measured in
this research might have to be considered by avalanche fore-
casters to arrive at accurate forecasts, and that additional
variables or combinations of variables have to be considered
by snow scientists to better understand patterns of stability.

SUMMARY

This research investigates snow-stability patterns as a func-
tion of terrain on the eastern side of a small mountain range
on two days in one winter. Previous spatial studies of snow
stability investigated patterns of stability at the scale of
single slopes, but this is the first field-based work to address
larger-scale patterns (on the order of hundreds of square
kilometers). Snow stability decreased on each of two
sampling days with increasing elevation and increasing
northerly aspect. Results must be viewed with caution since
other research (Schweizer and others, 1998) and informal
observations indicate that instability patterns often change
significantly from season to season, month to month and
even day to day. Still, the pattern of increasingly unstable
conditions on high-elevation, northerly aspects is com-
monly observed in the mountain snowpack, and this 1s the
first time these common observations have been quanti-
tatively demonstrated.

Though this research takes a valuable first step in explor-
ing the nature of spatial patterns and temporal variations in
snow stability, much research remains to be done in order to
better explain the spatial distribution of snow stability. One
factor inadequately addressed in this investigation is the
effect of the wind on various snowpack, snow-strength and
snow-stability variables. Perhaps a mesoscale wind model
using ground and upper-air wind inputs could be combined
with a blowing-snow model to arrive at a variable that
approximates wind deposition and scouring in various areas.
This variable might provide valuable insight into the spatial
patterns of depth, strength and stability. Another factor add-
ing to the unexplained variance is the small-scale variability
in snowpack and snow stability due to microscale variables
such as wind effects, substrate or vegetation. Such variability
poses serious difficulties for snow-stability studies at the scale
of the present research since differences between adjacent
points may be significant (e.g. Birkeland and others, 1995;
Jamieson, 1995; Arons and others, 1998). No methods cur-
rently exist to clearly define sample locations that might pro-
vide an “average” stability measure of the current slope. More
work at this local scale 1s needed to insure that measurements
made in regional-scale studies such as the present research
are actually representative of a particular slope.

In spite of the difficulties, the present research makes pro-
gress in quantifying patterns of snow stability, and forms an
encouraging baseline for future research concerning vari-
ations in snow stability at the regional scale. Further, there
are practical implications suggested by the insights provided
into the structure and complexity of the data used for
avalanche forecasting. First, this work demonstrates some of
the variability that exists in the relationship between snow-
stability variables and snowpack and snow-strength variables.
Until we better understand the linkages between all the vari-
ables, this emphasizes the critical importance of high-quality
snow-stability (so-called low-entropy (LaChapelle, 1980) or
Class T (McClung and Schaerer, 1993)) data for accurate
avalanche forecasts. Second, the differences observed between
the sampling days imply that relationships between variables,
and perhaps the scale at which variables can be extrapolated,
may vary depending on the snow climate. Therefore, the size
of a region that can be effectively covered by a regional
avalanche forecast might vary depending on the snow climate
of the area or even the weather during a particular winter.
Finally, this work shows how the already complex relation-



ships between variables also change over time. The dynamic
nature of snow stability confirms the importance of the holis-
tic, iterative approach used by conventional avalanche fore-
casters. Thus, the best way to improve avalanche-forecasting
techniques in the short term continues to be to provide
additional tools to aid the conventional forecaster, rather than
definitive decision-making models. Several such tools have
been and are currently being developed (e.g. Buser and
1987, McClung, 1994; Schweizer and Fohn, 1996;
Durand and others, 1999; L. chmno and others, 1999). I'or the
long term, a better understanding of both the relationships

others,

between the data variables used for avalanche forecasting
and the controls on the spatial patterns of snow stability at
the regional scale are needed for the development of more
sophisticated models to aid avalanche forecasters.
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