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Abstract: Many ski areas, backcountry avalanche centers, highway departments, and helicopter ski operations 
record and archive daily weather parameters and the resulting avalanche activity.  This paper proposes a new 
probabilistic method to allow avalanche forecasters to better utilize their historical weather and avalanche data by 
incorporating a Geographic Information System (GIS) with a modified meteorological nearest neighbors approach.  
This approach utilizes concepts from Geographic Visualization (GVis) and Knowledge Discovery in Databases 
(KDD).  The resulting interactive database tool allows avalanche forecasters to visually explore regional spatial 
patterns of avalanche activity at multiple scales.  This technique allows the correlation between weather parameters 
and the spatial pattern of avalanche activity. An example of this method was implemented using 23 years of 
historical avalanche data from the Jackson Hole Ski Area with over 10,000 avalanche events to analyze the effect of 
new snow, wind speed, and wind direction on the spatial patterns of avalanche activity.  Patterns were found at the 
slide path scale and for sub-regional groups, but not for the entire region as a whole, or when slide paths were 
grouped by aspect categories. 
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1. Introduction 
 

Avalanche forecasting utilizes inductive and 
deductive reasoning along with data and knowledge to 
reduce the uncertainty of the avalanche hazard for a 
given area (LaChapelle, 1980; McClung, 2002a; 
2002b).  Data used for avalanche forecasting can be 
categorized as meteorological data, snow-pack structure 
data, or direct stability data (LaChapelle, 1980).  These 
data are typically used real time and are incorporated 
into the day’s forecast.  When these data are recorded 
and archived, they can be analyzed to gain intrinsic 
knowledge about the local area.  However, many snow 
safety operations have collected these data, but have not 
yet devised an effective technique for analyzing them.  
The purpose of this paper is twofold.  First, we present 
a new technique for analyzing avalanche and weather 
data.  Second, we utilize that technique to explore the 
relationship between new snowfall, wind speed and 
wind direction on avalanche activity at the Jackson 
Hole Ski Area at both the scale of the ski area and the 
scale of individual avalanche paths.   
________________________________ 
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A scientific understanding of avalanches, as well as 
knowledge of the local patterns of avalanche activity 
(gained through experience) is crucial for avalanche 
forecasters (McClung, 2002a).  The former can be 
taught, but the latter is much more difficult to teach, 
communicate, or even define.  For example, how new 
snow, wind speed, and wind direction lead to selective 
wind loading and the formation of slab avalanches is 
relatively easily understood.  However, an 
understanding of which particular slide paths load 
under which conditions of new snow, wind speed, and 
wind direction requires additional knowledge that may 
require decades of local experience.  We present a new 
method with the ultimate goal of increasing knowledge 
by better utilizing historical data. Specifically, we are 
searching for the roles that different meteorological 
variables play in creating regional spatial patterns of 
avalanche activity. 

We chose meteorological data for this study for 
two reasons.  First, they can be directly related to 
historical avalanche data.  Second, they are readily 
available and highly abundant.  In addition, due 
primarily to the automation of data collection, the 
volume of these data is increasing exponentially.  Not 
only do the data increase as a function of time, each 
year more data are taken by increasing the types of 
measurements, adding new site locations, and 
increasing the rate of taking measurements.  Typical 
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weather parameters include precipitation parameters 
(i.e. new snow, snow water equivalent, snow depth), 
wind parameters (speed and direction, gusts, etc.), 
temperature parameters (maximum, minimum, mean, 
etc.) and many others.  These measurements are usually 
taken at multiple locations and are often automated. 

A number of techniques have been applied to 
similar data sets including discriminant analysis, cluster 
analysis, nearest neighbors, and Classification and 
Regression Trees (CART).  Obled and Good (1980) 
present an overview and comparison of the first three 
methods, and an example of CART is presented by 
Davis et al. (1996).  These methods all suffer from 
shortcomings.  First, they do not account for the 
geographic component of slide paths, which experience 
has shown is quite important.  Second, they typically do 
not analyze the data at the individual slide path scale, 
which is of primary importance to ski patrollers and 
others doing avalanche hazard reduction work.  Finally, 
they usually treat a day as either a day with avalanches 
or without.   As a result of this type of classification, 
most are not probabilistic in nature.   

Our approach differs from previous methods in 
both the underlying philosophy and in the specific 
methodology. Our underlying goal is to improve 
interaction with large datasets. We want a tool to 
explore and ask questions of the data in order to find 
spatial patterns.  The ideal tool will incorporate 
geography, be probabilistically based, and be useful for 
analyzing avalanche data at different scales (ranging 
from an individual slide path to the entire region). 

Two emerging fields, Geographic Visualization 
(GVis) and Knowledge Discovery in Databases (KDD), 
also share our primary goal of finding patterns and 
relationships in large datasets.  GVis and KDD have 
several underlying concepts in common (MacEachren 
et al. 1999).  First, both fields involve the interaction of 
computers and humans and see this interaction as a 
process, attempting to capitalize on the strengths of 
both. Second, iteration allows visualization of patterns 
at different scales that may illuminate trends that would 
not be obvious in a static view.  Iteration is also familiar 
to avalanche forecasters, who typically use iteration 
while forecasting to reduce uncertainty and improve 
forecast accuracy (LaChapelle, 1980).  Third, high 
interactivity between the user and computer allows the 
user to pose “what if” questions.  Finally, multiple 
perspectives allow the user to view the data at different 
scales, measures, or even different concepts.   

GVis has two additional criteria.  First, the data 
must have a geographic component.  Second, 
representations of the data take advantage of the human 
eye-brain ability to visually recognize and identify 
patterns.  MacEachren et al. 1999 defines GVis as “the 
use of concrete visual representations – whether on 
paper or through computer displays or other media – to 

make spatial contexts and problems visible, so as to 
engage the most powerful of human information 
processing abilities, those associated with vision.”  In 
contrast, KDD focuses on the data mining methods and 
algorithms to extract patterns from large databases. 

MacEachren et al. 1999 illustrates the strength of 
combining the concepts of GVis and KDD and present 
an excellent overview.  We apply these concepts to 
historical weather and avalanche data.  Avalanche data 
are well suited to be analyzed using the concepts of 
Geographic Visualization.  Slide paths have a 
geographic location along with geographic attributes 
(aspect, elevation, etc.) and can therefore be mapped, 
analyzed, and viewed with a GIS (Stoffel et al. 1998).  
The nearest neighbors technique has already been used 
as a searching technique to find similar historical days 
(Buser 1983; 1989) and is the search algorithm for our 
KDD approach.  Avalanche probabilities for a given set 
of input parameters are calculated for each slide path 
based on the set of the most similar historical days 
found by a nearest neighbor search.  Both KDD and 
GVis consider multiple perspectives to be very 
important.  These data can be viewed three different 
ways.  First, a GIS representation of the slide paths is 
used to display individual slide path probabilities for 
each slide path (Figure 1.).  This is the GVis 
perspective. Second, average probability for aspect and 
elevation categories can be used to relate those 
geographic attributes to the associated weather 
parameters (typically viewed with a rose diagram).  
Finally, the average probability can be created for all 
slide paths to get an overview of the set of weather 
parameters. 

Iteration is also one of the key concepts of KDD 
and GVis.  The values for a given set of weather 
parameters for the nearest neighbor search are 
systematically varied to create a series of avalanche 
probabilities sets.   Each variation is an iteration, and 
each iteration can be viewed using one of the 
perspectives described above.  More importantly, a 
feature of any perspective (individual slide path, aspect-
elevation category, or average probability) can be 
analyzed throughout its series.  If there is no 
relationship between the weather parameters and the 
feature (i.e. an avalanche path), the avalanche 
probability should not significantly change with 
changes in the nearest neighbor search values.  The 
response of a feature to changes in weather parameters 
is in itself a pattern or signature.  Finally, by visualizing 
probability patterns of slide paths along with viewing 
different perspectives, can we discover unknown 
patterns (knowledge)?  For example, do certain slide 
paths exhibit similar patterns?  

For this paper we consider new snowfall, wind 
speed, and wind direction. These weather parameters 
are primary forcing mechanisms for dry slab 



 
Figure 1:  GIS representation of the upper mountain at the Jackson Hole Ski Area, Wyoming, USA.  Avalanche 
starting zones are shaded to display avalanche probability. 
 
avalanches, particularly for wind loading and slab 
development (McClung and Schaerer, 1993).  We are 
primarily interested in new snow wind loading and slab 
development because we are utilizing ski area data 
where ski compaction is a primary consideration.  For 
each weather parameter (new snow, wind speed, wind 
direction), we analyze how it affects the pattern of 
avalanche activity for individual slide paths, for aspect-
elevation categories, and for the overall average. In the 
end, we are attempting to discover new patterns at 
different scales, thereby increasing our knowledge. 
 
2. Methods 
 
2.1 Data 
 

The data for this project are either historical or 
geographic. The historical data are composed of daily 
meteorological weather measurements and the 
associated avalanche activity.  The geographic data 
have a spatial component, which can be represented by 
a GIS. 

The historical weather and avalanche data span 23 
seasons, starting with the 1978-79 season and ending 
with the 2001-02 season.  During the original season 
roughly 50 weather parameters were recorded daily 
along with the associated avalanche activity.  These 
weather data included four precipitation sites (New 

Snow, Snow Water Equivalent (SWE) and Total Snow 
Depth), three temperature sites (6:00 AM, 24 hour 
minimum, maximum), one summit wind site  (4 x 6-
hour speed and direction), and numerous subjective 
parameters such as snow available for wind transport 
and daily warming.  Throughout all seasons those 
original weather parameters have been recorded along 
with new weather parameters that have been added.  
Today, hundreds of weather parameters are recorded 
daily, which include data from five precipitation sites, 
four temperature sites, and three wind sites, most of 
which are remote and automatically recorded.  
Precipitation measurements are manually verified at 
each site daily.  The historical avalanche data is 
composed of 10,232 avalanche events within the ski 
area.  Avalanche events were recorded using standard 
U.S. methods (Perla and Martinelli, 1978).  Each 
avalanche event is a record in a table with the date, 
slide path name, time, type, trigger, depth, U.S. size, 
and sliding surface as attributes. 

The geographic data (Figure 1) include a Digital 
Ortho Quarter Quad (DOQQ), Digital Elevation Model 
(DEM), and a polygon representation of the starting 
zones of 220 in-bounds slide paths.  A DOQQ is a black 
and white aerial photo that has been geo-rectified to 
account for lens distortion and curvature of the earth.  
The resolution and accuracy are very high (1-meter 
pixels), and we use this as a base layer for viewing the 



geographic data.  DOQQs are available from the U.S. 
Geological Survey, and are named by their associated 
7.5 min quadrangle.   

Jorgenson Engineering generated the original 
elevation data for the Jackson Hole Ski Area in an 
Auto-CAD format with elevation being represented by 
10-foot contour lines (3m).  We imported the Auto-
CAD formatted elevation data into a GIS (Arc-Info 7) 
and oriented it using common features in the DOQQ.  
Three-D Analyst, an extension of Arc-View 3.2, was 
used to create a 5-meter DEM from the 10-foot contour 
data.  A DEM is a representation of a continuous 
surface using a grid of equal spacing where each grid 
cell has an elevation value.  An aspect grid was created 
from the DEM using Spatial Analyst. 

Using the GIS, the slide path starting zones were 
digitized on-screen with a mouse using the DOQQ, 
contour data, and differentially corrected GPS data for 
reference.  The determination of the spatial extent and 
location of the slide path starting zones was done by 
Robert Comey, Lead Avalanche Forecaster for both the 
Jackson Hole Ski Patrol and the Bridger-Teton National 
Forest Avalanche Center.  Unlike the grid 
representation of the elevation data, the slide path 
starting zones are in a polygon (vector) format where 
each starting zone is represented by an enclosed 
polygon.  Each polygon corresponds to a record in a 
table where attribute data are stored for that polygon.  
The polygon starting zones in conjunction with their 
attributes is also known as feature data.  These 
attributes include the name, average elevation, and 
average aspect of each starting zone.  The average 
elevation for each starting zone was calculated by 
averaging all elevation grid cells contained in that 
starting zone’s polygon.  Similar methods were used to 
calculate the average aspect for each starting zone. 

 
2.2 Creating slide path avalanche probabilities 
 

Creating individual avalanche probabilities for 
each slide path is a four-step process.  First, a set of 
weather parameters along with a set of values must be 
chosen as a basis for searching the historical database.   
This constitutes a Target Day.  An example of a target 
day with three parameters could be: new snow = 25 cm, 
average wind direction = 270°, average wind speed = 5 
m/s.  Second, an optional filter may be applied to limit 
the historical days used.  For example, only consider 
days with new snow greater than 15 cm and less than 
35 cm.  Third, similar days are found in the historical 
database using a nearest neighbors technique.  This 
technique creates a distance measurement for each day 
in the historical database based on its similarity to the 
target day.  The more similar a historical day is to the 
target day, the shorter the distance measurement.  This 

technique has been tested and described by several 
authors, particularly Buser (1983; 1989). 

Finally, slide path probabilities are calculated 
based on the actual avalanche activity of the most 
similar days.  First, the number of near days to use is 
chosen. For this example, we consider the 100 nearest 
days.  For each of the 100 near days, the number of 
avalanche events is summed by slide path and then 
averaged.  If one slide path had 10 avalanches during 
those hundred near days, it would have an average 
probability of avalanching of 10%.  Likewise, if another 
slide path had 50 avalanche events out of 100 near 
days, its avalanche probability would be 50%.  This 
allows the creation of a slide path probability for each 
slide path and an average probability for the target day.  
Additionally, the near days can be optionally weighted 
by an inverse function of the nearest neighbor distance 
to count more similar days more heavily. 

 
2.3 Creating avalanche probabilities for aspect-
elevation categories   
 

To relate the geographic attributes of aspect and 
elevation of slide paths with weather parameters for the 
entire ski area rather than for individual avalanche 
paths, each slide path is categorized based on its 
average elevation and average aspect attribute data.  
Low (2000-2500 m), Middle (2500-3000 m), and High 
(3000+ m) are used as three elevation categories with 
eight aspect categories (N, NE, E, SE, S, SW, W, NW) 
for a total of 24 possible categories.  Next the slide path 
probabilities are averaged for all slide paths based on 
their aspect-elevation category.  These data can be 
viewed using a rose diagram. 

 
2.4 Creating series space 
 

The previous methods can be considered a 
function.  The input of the function is the target day and 
the output of the function is the set of slide path 
probabilities, aspect-elevation avalanche probabilities, 
and the average probability for the target day.  The 
combination of the target day and the set of resulting 
output (slide path avalanche probabilities, rose diagram 
probabilities, and average probability) constitute what 
we define as a Nearest Neighbor Avalanche Probability 
Profile (NNAPP).   

The effects of weather parameters on avalanche 
activity are visualized as a multi-dimensional space 
with the different dimensions as weather parameters.  
Considering the new snow, wind direction, and wind 
speed example earlier, we define the series space as a 
three-dimensional box with edges of new snow, wind 
direction, and wind speed.  To explore the response of a 
certain set of values of new snow, wind direction, and 
wind speed (an xyz location in the box) a NNAPP is 



created for that set of values. This can be done 
systematically by varying one weather parameter at a 
time, eventually creating a NNAPP to fill each location 
(variation of parameters) in the three-dimensional series 
space.  The NNAPP attribute avalanche probability now 
constitutes a fourth dimension.  Two of the three 
weather parameters and an avalanche probability can be 
graphed, visualized, and analyzed. 

 
2.5 Detailed example: new snow wind loading 

 
New snow, wind speed, and wind direction were 

chosen to explore their effect on avalanche activity for 
the Jackson Hole Ski Area.  New snow (Rendezvous 
Bowl precipitation) values range from 0 to 35 cm in 5 
cm increments for a total of 8 steps in the new snow 
dimension.  Wind direction (summit wind) was varied 
from 0° to 360° in 20° increments for a total of 19 steps 
(0 and 360 should be the same and are both calculated 
as a double checking measure).  The wind speed 
dimension has three categories: 5 m/s (low), 10 m/s 
(moderate), and 15 m/s (high).  Wind direction was 
weighted twice as heavily as new snow and wind speed 
(2,1,1) to help differentiate the 18 different wind 
direction categories.  All variables were normalized 
with their variance to standardize distance 
measurements.  Days were filtered (new snow ± 15cm, 
wind speed ± 4 m/s, wind direction ± 30°) and the 
inverse of the square root of the nearest neighbor 
distance was used to weight more similar days more 
heavily.  A minimum of 10 days and a maximum of 100 
days were used to create the NNAPPs.  Using three 
dimensions with steps of 8 by 19 by 3 creates a three-
dimensional series space with 456 NNAPPs.  Every 
slide path, aspect/elevation category, and the average 
probability can be analyzed in this series space, giving 
each its own unique series signature.  
 
2.6 Statistical analyses 
 

The goal of our statistical analysis was to compare 
the pattern observed for a series signature (for an 
avalanche path or groups of paths) to another series 
signature.  Our primary interest was in the pattern 
observed, and not in the mean of the avalanche 
probabilities.  To do this we used a simple correlation 
analysis (Pearson’s r) to compare the avalanche 
probabilities in one series signature to the other series 
signature.    

 
3. Results and discussion 

 
In this paper we present general results, followed 

by two sets of examples.  Full results are presented in 
McCollister et al., (submitted). 

Not surprisingly, an increase in new snow led to an 
increase in the avalanche probability at all scales, from 
individual paths to the entire ski area.  More new snow 
results in more stress added to buried weak layers or 
interfaces, thereby increasing avalanche activity 
(McClung and Schaerer, 1993).     

Unlike new snow, the effect of wind speed is 
different depending on the scale of observation.  At the 
scale of individual avalanche paths, considerable 
variability exists.  Though most slide paths exhibit an 
increase in avalanche probability with increase in wind, 
some different patterns emerge depending on the slide 
path.   Some display a very large increase, such as 
Buffalo Bowl, a low elevation (2404 m) slide path 
(Figure 1).  In contrast, some slide paths, such as 
Broadway, decrease in avalanche likelihood with an 
increase in wind, presumably because the higher wind 
speed scours those paths.  Others, such as Cajun 
Couloir, increase (load) at certain wind directions, and 
decrease (scour) at other directions.  At the larger scale 
of the entire ski area there was a general increase 
between low and moderate wind, but not between 
moderate and high wind for both the overall average 
and the aspect-elevation categories.  This demonstrates 
how much variability exists at the scale of single paths 
within the overall average for the ski area.  

Like wind speed, the effect of wind direction is 
different for different scales.  At the scale of individual 
slide paths, changes in wind direction change the 
probability of avalanche activity.  Conversely, wind 
direction does not appear to significantly change the 
series signatures for the aspect-elevation categories or 
the overall average computed for the entire ski area, 
presumably because the responses of the individual 
avalanche paths cancel each other out and “smooth” the 
data. 

In accordance with the principles of KDD and 
GVis, we used computer interaction, iteration, and 
visualization to explore the data.  As we did this, we 
noted that many slide paths exhibit similar series 
signatures.  Additionally, slide paths with similar 
signatures are often in the same geographic area.  As an 
example, we show two paths from the Cheyenne group 
and two from the Casper group.  Slide paths in the 
Cheyenne group include Cheyenne 3-9, The Snag, and 
Roadcut (Figure 1.).  A comparison of the series 
signatures for Cheyenne 3 (Figure 2) and The Snag 
(Figure 3) in a high wind situation shows that the two 
are quite similar.   

All the slide paths in the Cheyenne group exhibit 
similar series signatures, and are all most likely to 
avalanche with winds out of 240-260 degrees, which is 
the predominant wind direction for most storms 
affecting Jackson Hole Ski Area.  In contrast, the slide 
paths in the Casper group (Caspers 10, 12, 14, 20) have 
very different series signatures, and all experience their 



highest avalanche activity with winds either more 
southerly or northerly than the predominant wind  

direction.  A comparison of the series signatures for 
Casper 12 (Figure 4) and Casper 10 (Figure 5) shows 
that these two paths are similar to each other, and quite 
different from the Cheyenne group.   

 

0

60

12
0

18
0

24
0

30
0

36
0

0

300.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

p

Wind Direction

New Snow 
(cm)

 

We used correlation analysis to statistically 
compare the different patterns observed.  Correlations 
between corresponding points in the series signatures of 
Cheyenne 3 (Figure 2), The Snag (Figure 3), Casper 12 
(Figure 4), and Casper 10 (Figure 5) are presented in 
Table 1, and scatter plots are shown in Figure 6 for 
visual reference.   
 

Table 1. Series signature correlations 
  Pearson R p (2-tailed) 

Casper 12 vs. Casper 10 0.893 0.000 

Snag vs. Cheyenne 3 0.838 0.000 

Casper 12 vs. Cheyenne 3 0.303 0.008 

Casper 12 vs. Snag 0.320 0.005 

Casper 10 vs. Cheyenne 3 0.177 0.127 

Casper 10 vs. Snag 0.181 0.118 

NE facing vs. E facing 0.959 0.000 

E facing vs. SE facing 0.958 0.000 

SE facing vs. S facing 0.876 0.000 

Figure 2: Series signature for Cheyenne 3-high wind. 
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The statistical analyses reinforce the conclusions drawn 
from our visual comparisons.  Slide paths in the same 
group (similar patterns) have high correlation (R > 
0.83; shown in bold type in Table 1.), while 
comparisons between groups have low correlations (R 
< 0.32).  Note that some between group correlations are 

Figure 3: Series signature for The Snag-high wind. 
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Figure 6:  Probability-probability scatter plot for 
corresponding points between two series signatures. 

Figure 4: Series signature for Casper 12-high wind. 
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significant at the p < 0.05 significance level.  We would 
expect some correlation since avalanche activity should 
generally increase with increasing wind and new Figure 5: Series signature for Casper 10-high wind. 



snowfall.  However, in this example we are less 
interested in whether two series signatures are 
correlated than we are in the actual strength of 
correlation. 

If we broaden the scale to sets of avalanche paths 
grouped by aspect, rather than by geographic location, 
we get a different result.  Looking at four high elevation 
aspect categories (northeast, east, southeast and south 
facing) shows that their series signatures appear similar; 
we present an example in Figure 7.  Further, a 
correlation and scatter plot analysis shows that they all 
correlate well with each other, with R = 0.88-0.96 
(Table 1; Figure 8).  Thus, while there are sizable 
differences between individual paths based on their 
location within the ski area, those sizable differences do 
not exist between sets of avalanche paths grouped by 
aspect and elevation. 
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Figure 7: Series signature for upper elevation-
northeast aspects at high wind. 
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Figure 8:  Probability-probability scatter plot for 
corresponding points between two high elevation aspect 
category series signatures. 
 
4. Conclusion 
 

In general, each of the three weather parameters 
investigated affected the avalanche probabilities 

differently.  The effect of new snow is clearly important 
since it increases avalanche activity at all scales.  
However, because of its global effect, it does not play a 
significant role in differentiating between slide paths.  
In contrast, wind speed does have a different effect 
depending on the avalanche path location.  For 
example, high wind is very important in the creation of 
slab avalanches at lower elevations. Of the three 
weather parameters, wind direction plays the largest 
role in slide path differentiation, probably because of 
the way the wind from different directions is redirected 
by the topography around each avalanche path.  

More important than information gained about 
individual weather parameters, the combination of the 
three weather parameters along with their series 
signature representations have given us new knowledge 
about selective wind loading and slab development at 
the scale of individual paths.  Analysis of the series 
signatures was the key component to our analyses. The 
high correlation among groups along with the low 
correlation between groups gives us confidence that we 
are extracting real patterns.  Combining this with 
common geographic properties in the groups has given 
us several new insights about our region. 

One interesting finding from our work was that 
paths in similar geographic areas are similarly affected 
by wind direction.  The Cheyenne group is very 
selective with regards to wind direction.  These paths 
load most effectively when the wind is coming from the 
predominant wind direction.  In contrast, the Casper 
group is most active with winds either north or south of 
the predominant wind direction.  In addition to this 
general knowledge, we may be able to extrapolate the 
wind loading effect for highly unusual situations by 
looking at the series signatures for a given path, or 
groups of paths.  For example, we would be much more 
concerned with avalanche paths in the Casper group 
than the Cheyenne group if we had high winds out of 
140-160 degrees associated with a large storm. 

Another interesting finding from this work was that 
all of our high elevation aspect categories exhibited 
similar series signatures.  In other words, at the scale of 
the entire ski area, there is not an obvious relationship 
between avalanche activity on a given aspect and wind 
direction.  This is interesting, since blanket statements 
like “East facing slopes are being loaded by westerly 
winds” may be misleading.  This is not to say that 
aspect with respect to wind direction does not play a 
role in avalanche development; clearly, at the scale of 
individual paths, wind direction is critically important.  
However, since wind instrumentation is typically 
centrally located to measure an approximation of the 
free air winds, specific topography around a given path, 
not simply aspect, is more important when relating 
wind direction to avalanche activity.  For example, the 
effects of ridges funneling wind and groups of trees 



acting as snow fences are more likely the most 
proximate reasons for selective wind loading at the 
slide path scale when considering the ultimate effect of 
wind direction. 

In essence, our work shows that patterns associated 
with some weather parameter (like wind direction) exist 
at some scales, but not others.  Patterns existed at the 
individual slide path scale and for sub-regional groups.  
In contrast, specific patterns were not discernable for 
aspect-elevation categories and the overall average. 

The concepts behind Knowledge Discovery in 
Databases and Geographic Visualization as outlined by 
MacEachren et al. (1999) were paramount in this 
research.  The concept of iteration was used to create 
the series signature.  The concept of an interactive 
process between humans and computers was utilized by 
first visually looking at the series signatures.  Next 
came classifying slide paths based on their series 
signature, and looking for geographical relationships 
between classifications (groups).    Finally, multiple 
perspectives of the data (GIS, series signatures, and 
aspect-elevation rose diagrams) allowed us to discern 
patterns at different scales 

These methods are not restricted to new snow, 
wind speed, and wind direction.  They can be 
performed on any set of variables, whether directly 
measured variables or calculated variables such as 
density, storm totals, or temperature gradients.  We 
believe there is much potential for the concepts of KDD 
and GVis to improve the utilization of historic weather 
and avalanche databases, and to reach this potential, 
imagination in the application of these concepts is as 
important as the underlying concepts themselves.  
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