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[1] The literature disagrees about the statistical distribution
of snow avalanche crown depths. Large datasets from
Mammoth Mountain, California and the Westwide
Avalanche Network show that the three-parameter
generalized extreme value distribution provides the most
robust fit, followed by a two-parameter variation, the
Fréchet distribution. The most parsimonious explanation is
neither self-organized criticality nor other complex
cascades, but the maximum domain of attraction,
implying that distributions of individual avalanche crown
depths are scaling. We also show that crown depths do not
have a universal tail index. Rather, they range from 2.8 to
4.6 over different avalanche paths, consistent with other
geophysical phenomena such as wildfires, which show
similar variability. Citation: Bair, E. H., J. Dozier, and K. W.
Birkeland (2008), Avalanche crown-depth distributions, Geophys.
Res. Lett., 35, 123502, doi:10.1029/2008 GL035788.

1. Introduction

[2] Different authors have modeled avalanche size
distributions using distributions belonging to the
subexponential class. Subexponentials have tails that decay
more slowly than the normal distribution and are used to
model highly variable data. Questions about best fit and tail-
indices have not been resolved. We build on previous
work involving subexponential distributions and apply it
to the ongoing debate in the snow science community over
avalanche-size distributions. We examine two very large
data sets of avalanche crown depths to determine which
distributions provide the best fit.

[3] After discussing scaling distributions, we review
previously published studies on size distributions in snow
avalanches. We then describe the Mammoth Mountain and
Westwide Avalanche Network datasets, before presenting
and discussing our results and proposing a generating
mechanism for the observed distribution.

1.1. Scaling Distributions

[4] A subexponential distribution [Goldie and Kliippelberg,
1998] of a random variable F (x) has a right tail that decays
more slowly than an exponential:

F
geooforallu>0 (1)

[s] Members of the subexponential family include the
Pareto of first and second kind, Burr, lognormal, Weibull,
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and log-gamma. Gaussian and exponential distributions are
not in the subexponential class since their tails decay as
exponentials. Recent research has focused on whether
avalanche size distributions belong to a subclass of sub-
exponentials called scaling distributions. A distribution is
scaling [Mandelbrot, 1982] if for some tail-index a > 0 its
survivor function P(> x) follows a power law:

P(>x) = /pdf(x)dx xx 4,0 <x <00 (2)

X

[6] A scaling distribution lacks inherent scale: it is self-
similar at all scales, and its sole response to conditioning is a
change of scale [Willinger et al., 2004]. Scaling distributions
are invariant under aggregation and weighted mixture, and
they are the only distributions that are invariant under
maximization [Mandelbrot, 1997]. These strong invariance
properties have led to the idea of scaling distributions
being “more normal than normal” [Willinger et al., 2004;
Brookings et al., 2005] as the most parsimonious model for
highly variable data just as Gaussians or exponentials are for
data with low variability.

1.2. Scaling Distributions, SOC, and HOT

[7] Scaling distributions have been cited as evidence of
emergent behavior such as Self-Organized Criticality (SOC)
[Bak et al., 1988], systems driven towards a self-sustaining
critical state. An alternative explanation for power laws is
Highly Optimized Tolerance (HOT) [Carison and Doyle,
1999, 2000]. In this view, power laws arise by system design,
whereby systems are robust to common perturbations but
fragile to rare events.

2. Literature Review

[8] Power-law behavior has been observed in avalanches
throughout the Western US and internationally, using
different size measures including crown depth [Rosenthal
and Elder, 2003; Faillettaz et al., 2006], class size
[Birkeland and Landry, 2002], and area [Louchet et al.,
2002]. The ranges of sizes over which fits have been applied
have been inconsistent, and McClung [2003] asserts that
avalanche crown-depth distributions are lognormal instead.
Proposed distribution generating mechanisms include
chaotic processes [Rosenthal and Elder, 2003], self-
organized criticality [Birkeland and Landry, 2002; Louchet
et al., 2002; Faillettaz et al., 2004], and components of
fracture toughness [McClung, 2005; Heierli et al., 2008].

[9] Some work claims the existence of a universal scaling
exponent (a ~ 2.2 £ 0.1), suggesting that avalanche scaling
behavior is independent of area [Louchet, 2001; Faillettaz
et al., 2006], but other studies show wide variation in
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Figure 1. (a) Crowns larger than 0.305 m (N = 63, a = 3.7) for the steep Hangman’s Hollow run at Mammoth Mountain.
The confidence intervals (Cls) are too wide to choose a distribution. (b) All Mammoth Mountain crowns larger than 0.305 m
(N =3,106, o = 3.4). The gev and Fréchet distributions consistently stay within or near the CIs.

power-law exponents [Birkeland and Landry, 2002;
Rosenthal and Elder, 2003].

[10] Open questions are: (1) At what scales does the
tail index apply: path, area, region, or a universal feature?
(2) What are the generating mechanisms for these
distributions? (3) Are power laws in avalanches evidence
of self-organized criticality [Bak et al., 1988], highly
optimized tolerance [Carlson and Doyle, 1999, 2000] or
some other generating mechanism?

3. Datasets With Crown Depths
3.1. Mammoth Mountain

[11] The dataset comprises 3,106 avalanche crowns
deeper than 30.5 cm (1.0 ft) on 165 avalanche paths
recorded over 39 seasons at Mammoth Mountain Ski Area,
CA. Based on experience of the first author (E. H. Bair) as a
ski patroller there, the recorded crown depths under-
represent small avalanches. Often avalanche paths are ski
cut and small sloughs are triggered but not recorded. We
therefore set a minimum observed depth at 30.5 cm.
Moreover, bigger avalanches attract more attention and their
crowns are often measured more accurately than more
common shallower ones. We assume that the same distri-
bution generating process applies to shallow and deep
avalanches, and we are more interested in fitting the right-
tail of the distribution than the left. We examine crown
depth because it is more consistently recorded than width or
length and shows larger variation than class size. Ideally, we
would measure avalanche snow volume, but such a detailed
measurement is operationally infeasible, so we rely on
crown depth as the best proxy for volume. Patrollers also
rely on crown depth, since it is the only value that can be
measured quickly and accurately. On occurrence charts,
sizes are recorded in inches, but even-numbered values
and values corresponding to multiples or half-multiples of

feet are more common in the dataset than odd numbers.
Almost all Mammoth avalanches were triggered artificially.

3.2. Westwide Avalanche Network (WAN)

[12] The WAN began compiling avalanche and weather
records from ski resorts and highway departments in 1968
and continued through 1995. The inventory we examined
comprises 61,261 crowns deeper than 30.5 cm from 28 ski
areas in continental, intermountain, and maritime ranges and
one highway operation. The WAN data have similar under-
reporting problems as the Mammoth data. They are
recorded in feet and are reliable only for sizes greater than
30.5 cm. We smooth the WAN data to compensate for their
coarseness (see Methods). Most WAN avalanches were
artificially triggered.

4. Methods

[13] We fit crown depths above the threshold size
discussed in Section 3. We investigate the maximum like-
lihood estimate (MLE) fit of seven distributions on both
datasets: six with two parameters—power law, Fréchet,
lognormal, Weibull, gamma, and generalized Pareto—and
the generalized extreme value (gev) distribution with three
parameters. Only the gev and Fréchet distributions fit all
datasets, so we show these and the lognormal and power
law to compare with previous work. Inverse distributions
did not fit as well. The power law fits the upper tail of the
distribution well, i.e. the large crowns, but not the lower
tail. In the Mammoth dataset, the data are recorded for
individual paths, so we explore depth distributions for paths
as well as for the area. For the WAN dataset, we examine
distributions of four areas with robust data collection efforts
as well as the whole dataset.

[14] Since the WAN data are recorded in whole feet only,
their quantization is too coarse for our fitting methods. We
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Table 1. Distribution Parameters and Fits for All Mammoth
Crown Sizes Above 0.305 m?*

Passed Probability
Distribution o oc(m) pu(m) Which Test? of Fit
Generalized 2.8 0.16 0.55 rank sum 0.79
extreme value
Fréchet 3.4 0.56 0 rank sum 0.71
Lognormal 0.41 -0.41 none n/s
Power law, 3.9 1.4 none n/s

best KS stat

“Here n/s: not significant.

smooth the WAN crowns in the following manner: Assum-
ing that WAN measurements in feet are rounded uniformly
+0.5 ft (i.e., 2 ft crowns are between 1.5 and 2.5 ft), we add
a uniformly distributed random variable in range [0,1] and
then subtract 0.5 ft. We then convert the data to meters.

[15] All but one of the distributions are fit with the
MATLAB statistics toolbox [MathWorks, 2007], the excep-
tion being the power law, for which we use the “Santa Fe”
formulas from A. Clauset et al. (Power-law distributions in
empirical data, arXiv, 0706.1062v1, 2007) and Newman
[2005]. Because a power law’s pdf goes to infinity as x
vanishes, we use a lower cutoff at 30.5 cm from the
argument presented in Section 3. Crown depths do not
appear to have an upper cutoff, so we do not use an upper
limit [Manning et al., 2005] or an exponential-decay power
law [Burroughs and Tebbens, 2001]. Our normalized power
law is a modified form of equation (2):

P =P (L) ()

[16] The survivor functions for the gev and Fréchet
distributions [MathWorks, 2007] are:

e GXPHI *"Q]_W} @

1 for x < p

Frechet : P(> x) = — i —a (5)

1 —exp [— (x_p) } otherwise
o

In the gev distribution, the three parameters to fit are k, o,
and p. The Fréchet distribution is a subclass of the gev
where k£ > 0. Because the survivor function for avalanches
must go to 1.0 as crown size goes to zero, p = 0 in

Table 2. Scaling Parameters for Four WAN Areas With the Most
Robust Records of Avalanches, Compared to Mammoth Mountain

gev  Number of

Fréchet « = 1/k Crowns > Which Probability
Area @ 95% CI 95% CI  0.305 m Best Fit? of Fit
Alyeska, AK 35-37 19-22 4562 gev 0.65
Squaw 39-4.1 2.1-24 3,926 Fréchet 0.55
Valley, CA
Snowbird, UT 3.6-3.8 24-29 37704 Fréchet 0.65
Alpine 42-44 20-24 3,435 gev 0.36
Meadows, CA
Mammoth 33-35 26-3.1 3,106 gev 0.79

Mountain, CA
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Figure 2. Normal probability plots of scaling exponents
(and their upper and lower bounds) for Mammoth paths
with N > 40, from the Fréchet distribution.

equation (5) so there are only two parameters to fit in the
Fréchet distribution.

[17] We use three tests of statistical significance: Chi-
square, Kolmogorov-Smirnov (KS), and Wilcoxon rank
sum. The KS test has been shown to be effective for
heavy-tailed data [Goldstein et al., 2004]. Its greatest
weakness for evaluating power-law fits is its sensitivity to
the value of p and its basis in the maximum deviation
between the empirical and model cumulative distribution.
The greatest weakness of the Chi-square test is its sensitivity
to binning. The Wilcoxon rank sum test is a non-parametric
alternative since it does not require assumptions about the
distribution. Fits are measured using the probabilities that the
null hypothesis is correct, i.e. that data are consistent with a
particular distribution. Finally, 95% confidence intervals
(CIs) around the empirical distribution are constructed and
plotted [Kaplan and Meier, 1958].

5. Results
5.1. Maximum Likelihood Estimates for a Single Path

[18] We begin by examining a single avalanche path
(Figure 1a). The legend is ranked with the highest average
probability of a fit first. The 95% Cls of the empirical
distribution are too wide to unambiguously choose a statis-
tical distribution, but the plot suggests the gev provides the
most robust fit.

5.2. MLE Estimates for Al Mammoth Crowns

[19] To narrow our Cls, we examine all Mammoth crown
data (Figure 1b). With the sample size dramatically
increased to include all crowns, the gev and Fréchet
distributions are the only ones that fit the data (Table 1)
(Table 2). Table 1 also shows the tail indices « for the three
scaling distributions.

5.3. Estimates of o

[20] Since maximum likelihood estimates produce
asymptotically normal parameter estimates, we can compute
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Figure 3. Statistical distributions for four WAN areas with robust data collection, for crowns deeper than 0.305 m. While
the WAN data as a whole are not fit by any of the distributions, the individual areas in this figure are fit by the gev and
Fréchet. This finding suggests that areas in the WAN database are a collection of maxima and their parent distributions are
scaling. (a) Alyeska, AK; (b) Squaw Valley, CA; (c) Snowbird, UT; (d) Alpine Meadows, CA.

a 95% CI for a for the lumped Mammoth crowns
from either the gev or Fréchet distributions. From the
Fréchet, 3.3 < o < 3.5. Different paths at Mammoth show
the scaling exponent « to vary from 2.8 to 4.6 among paths
(Figure 2). The plots of the upper and lower bounds show
significant differences among the « values even when
standard error in the parameter estimates is accounted
for. Since almost all avalanches examined were triggered
artificially, we believe variations in « are partly caused by
differences in how a path is controlled. For instance, one of
the lowest a paths at Mammoth cannot be shot with artillery
for safety reasons and therefore accumulates significantly
more snow without avalanching than surrounding paths

which can be shot with artillery. Other factors influencing
« are likely: wind, exposure, slope angle, altitude, and
topography.

6. Generating Mechanisms

[21] Are power laws in avalanche crown-depth distribu-
tions indicative of Self-Organized Criticality (SOC) or
Highly Optimized Tolerance (HOT)? Two results argue
against either conclusion. First, the exponents are too
large to be consistent with either framework. In HOT
models, o ~ 1/d where d is the dimensionality of the
system. Therefore, HOT does not predict power laws with
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a > 1. Second, SOC does not predict power laws with
survivor function slopes greater than 1.

[22] With the gev distribution providing the most robust
fit for the Mammoth crowns, we consider a simple statistical
mechanism for heavy-tailed distributions: these crown
depths represent the maximum (or near maximum) size of
the crown for each observed avalanche. After reviewing
occurrence chart notes and crown line profiles with mea-
sured ranges of crown depth, we believe that a maximum
depth, rather than the average, is typically recorded on
occurrence charts and during database entry. Multiple
measurements of crown height for individual avalanches
are generally unavailable, so we do not know their statistical
distribution. However, the gev will result from a large
sample of maxima [Gnedenko, 1943]. Based on the shape
parameter £ = 1/« in equation (4), the gev can be broken
into three maximum domains of attraction (MDASs), which
for k> 0 is the Fréchet.

[23] Figure 3 shows smoothed crowns larger than 30.5 cm
for the four largest contributors to the WAN database for
deep avalanches. 95% CIs show some of the « values to be
significantly different than those of Mammoth. Therefore,
the generating mechanism is slightly different for different
areas, and the scaling exponent is not universal as Louchet
[2001] claims. Only the gev and Fréchet distributions
significantly fit the crown heights from these four WAN
areas. For the whole WAN database, the crowns are not fit
by a single distribution. We suggest that the integrity of
some WAN data is questionable because of varying levels
of resources that areas put into their avalanche record
keeping. For this reason, we limit our analysis to individual
WAN areas with large numbers of deep avalanches and a
robust recording protocol.

[24] The prevalence of significant fits by the gev and its
special case, the Fréchet, for Mammoth and individual
WAN areas suggests that these crown depths represent
maxima of samples from underlying distributions. Without
accurate field measurements of distributions of crown
depths from individual avalanches, it is not possible to
know the exact form of the generating distribution. To our
knowledge, no studies to date have measured avalanche
crown depths at multiple locations for a large set of
avalanches.

7. Conclusion

[25] The gev and Fréchet distributions provide robust fits
on path and area scales for crown depths above 30.5 cm in
two large datasets. The WAN and Mammoth data comprise
much larger datasets than used in previous work. The most
parsimonious explanation for the observed distribution is
not self-organized criticality or highly optimized tolerance,
but maximum domain of attraction (MDA). In other words,
there is nothing exotic or critical about these crown-depth
distributions. Instead, power law behavior in the tail of the
distribution results from a collection of maxima. The
Fréchet MDA implies that individual avalanche crown-
depth distributions follow some type of scaling distribution.
More field observations on individual avalanche crown
faces are needed to investigate whether individual avalanche
crown depths are scaling. Given the highly variable nature
of snow depth, this result would not be a surprise, taking
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into account the “more normal than normal” features of
scaling distributions.

[26] Avalanche crown depths do not have a universal tail
index. At Mammoth the tail indices for avalanche crown-
depth distributions range from « ~ 2.8 to 4.6. This finding
is consistent with other geophysical phenomena, such as
forest fires size distributions, which show regional variation
in tail indices [Malamud et al., 2005]. Future work to better
understand variations in the tail index is important because
paths with smaller indices have a greater proportion of
large, potentially dangerous snow avalanches.
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