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Understanding the spatial variability of snow at many different scales is critically important for avalanche 
forecasting.  This research uses new techniques to reanalyze an existing spatial dataset collected in 
southwest Montana’s Bridger Range during the 1996-97 winter.  Recent developments in statistical 
software have greatly increased the ease with which mixed effects and spatially correlated models can be 
run. Employing such advanced statistical procedures can lead to more beneficial use of available data 
sets and a more efficient use of limited financial funding. We reanalyzed the data using recently 
developed packages in SAS and the freely available software package R. The generalized linear model 
provides a suitable framework for categorical and / or dependent response variables. We analyzed the 
data using a fixed effect repeated measures model, a random effect clustered data model, and a spatially 
dependent fixed effects model using normally distributed continuous data. In addition, using the GLIMMIX 
procedure in SAS, we analyzed the data using a spatially dependent – random effects model with 
multinomial errors. This method allows for analysis of untransformed ordinal data, such as the data 
created when performing Rutschblock and stuffblock tests. Comparisons to the original analysis and 
suggestions for improving analytical efficiency are discussed.  Our analyses help to provide a 
methodological context for future analyses of similar regional spatial data. 
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1.  INTRODUCTION  

 
Understanding the spatial variability of 

snow at different scales is a critical component 
of avalanche forecasting. Motivations for 
investigating the effect of spatial variability are 
well documented (Schweizer et al, 2008). Few 
studies have collected concurrent data across 
large expanses, (> 40 km) thus enabling 
researchers to investigate only spatial variability 
without having to control for temporal changes. 
This paper revisits a data set collected during 
the winter of 1996-97 in southwest Montana’s 
Bridger Mountains.  

Complete univariate and linear regression 
analyses performed on this data were previously 
published by Birkeland (2001). The author 
correctly stresses a conservative approach 
using simple linear regression.  However, recent 
advances in statistical software allow 
researchers with a moderate understanding of 
statistics to run mixed effects models and 
spatially dependent models. This can be 
accomplished with the widely available software 
program SAS (West et al, 2007; Littell et al, 
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2006) as well as the freely available program R 
(Pinheiro and Bates, 2002).  

A detailed description of the model 
selection process is provided for one analysis. 
For ease of interpretation, results for each model 
are presented in the relevant sub-section.  
Inferences from these analyses will be 
compared to each other as well as to the original 
analyses in the discussion section. Linear mixed 
models, linear spatially dependent models and 
ordinal logistic with random spatial effects 
regression models are described.  
 
2.  SITE DESCRIPTION AND FIELD METHODS 

 
 The complete field methods, a full 

description of the study area, and a thorough 
discussion of the variables collected are 
described in Birkeland (2001). The data were 
collected during two days, February 6th, and 
April 2nd, 1997. The Bridger Range is classified 
in the intermountain avalanche climate zone, 
(Mock and Birkeland, 2000). The range consists 
of a single ridge approximately 40 km long and 
10 km wide. The highest peaks climb 1400 m 
above the valley to reach an elevation of 
2900 m. 

Helicopters were used to transport six two-
person crews to 13 locations along the main 
spine of the Bridger Mountain range during each 
of the two days of data collection. Not all 
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response variables collected, nor environmental 
covariates collected are used in this paper.  

For examples using continuous data, the 
Total Failure index (TFI) was used. To facilitate 
comparisons between locations with varying 
numbers of failure planes, Birkeland (2001) 
developed TFI using the following factors, 
stuffblock height (Birkeland and Johnson, 1999), 
failure depth, and number of failure planes. TFI 
decreases as avalanche hazard increases. 

For examples using ordinal categorical 
data, rutschblock scores (Föhn, 1987) are used. 

The three terrain variables used are 
elevation, slope angle, and radiation index 
(degrees from north).  

 
3.  MIXED EFFECTS MODELS 
 
3.1 Overview of mixed effects models

 
When a regression contains both random 

and fixed effects, it is said to be a mixed effects 
model, or simply, a mixed model. Fixed effects 
are those with which most researchers are 
familiar. Any covariate that is assumed to have 
the same effect for all responses throughout the 
regression are considered fixed. Examples of 
fixed effects might be temperature, slope angle 
or aspect.  

Random effects are those that are not of 

direct interest in a study. Examples of random 
effects in this study are observer effects, 
location effects, or possibly a day effect. They 
typically arise from logistical constraints placed 
on a study. By modeling random effects, more 
robust fixed effect coefficients and standard 
errors can be obtained. These coefficients are 
considered “population averaged”, (West et al., 
2007). If random effects are not properly 
modeled, then biased fixed effect coefficients 
are likely to be obtained.  

The general matrix notation for a mixed 
model is;  

 

i i iY =X Z i iuβ ε+ +           (1) 

( )~ N 0,Diu  

( )~ N 0,Riε  
 

where X is the data matrix, β is the vector of 
fixed-effect regression coefficients, Z is the 
observed values of covariates (can resemble X 
but typically has fewer columns), μi is the vector 
of random effects for the ith subject, D is a 
variance-covariance matrix for the random 
effects and R is a variance-covariance matrix for 
the errors. By definition, random effects are 
random variables assumed to follow a normal 
distribution.  
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The motivation for using random effects 
can be best conveyed graphically. Figure 1 
shows the relationship between the three terrain 
variables and TFI for the February data. The 
y-axis across all panels is TFI. The x-axes are 
elevation in meters, radiation index, and slope 
angle. Note that the slope and intercept for each 
variable vary between locations.  

The simplest approach is to employ a 
random intercept model, one that allows for 
each location to have its own intercept. A slightly 
more complex model is one that has both a 
random intercept and random slope for each 
location.  

 
3.2  Two level clustered data model
 

Initial inspection of the three terrain 
variables in relation to TFI during the February 
data collect indicates that a random slope and 
coefficient may be necessary (Figure 1).  

The data described is a two level clustered 
data model wherein the first level is the snow 
stability response data, and the second level is 
the cluster of tests performed within each 
location. A  top-down model selection approach 
(West et al., 2007) started with all three terrain 
variables of interest, the three two-way 
interactions, the one three-way interaction 
possible, and a random intercept. 

Model selection was carried out using an 
information theoretic approach, (Burnham and 
Anderson, 2001). The full model was fit with  

fixed effects only in order to determine which 
fixed effects were likely to remain in the model 
when the random effects were entered. 
Differences in Bayesian Information Criteria 
(BIC) values were used to determine the best 
fitting model. BIC values are based on maximum 
likelihood values (or a derivative such as 
REML), the number of parameters in the model, 
and the sample size of the data (Schwartz 
1978). When comparing models with different 
fixed effects, maximum likelihood (ML) estimates 
were used. When comparing models with 
different random effects, restricted maximum 
likelihood (REML) estimates were used (West et 
al., 2007). Typically, the smaller the BIC value, 
the better the model. But this is only a guideline, 
not an absolute rule.  Note that using REML 
instead of ML can drastically change the BIC 
values. Valid comparisons can be made only 
between models that have been fitted using the 
same method (i.e. REML or ML). 

There is no one right way to proceed with 
model selection. For a complete discussion of 
the process see Burnham and Anderson (2001). 
For a detailed discussion of model selection with 
mixed models see West et al (2007)  

 
3.3  Model selection for mixed models

 
A general description of the model selection 

process follows. A full model is fit using ML 
without any random effects. The p-values for 
individual effects are inspected and the least  
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significant effect is removed. This is repeated to 
determine the model with lowest BIC value. The 
only restriction of covariate removal was that if a 
two-way interaction remained in the model, each 
of the single covariates that comprise the 
interaction must be kept in the model. If a three-
way interaction is left in the model, then all 
two-way interactions that comprise the three-
way interaction must be left in the model. This is 
referred to as a hierarchical model. After a 
preliminary analysis of the fixed effects is 
completed, the best model is refit with REML 
and then compared to a model with a random 
intercept, and/or a random slope.  

Once random effects are selected, all fixed 
effects must be re-inspected using ML. This is 
critical. Failure to revisit fixed effect selection 
can lead to spurious results and negates the 
purpose of using random effects.  

 
3.4  Two- level mixed model for February data 

  
A description of the model selection 

process for the February data follows.  
Inspection of this model indicated the three-

way interaction (p = .83) and two-way interaction 
between elevation and radiation (p = .81) were 
the least significant. The three-way interaction 
was removed. The following model, radiation* 
angle + angle* elevation + elevation* radiation 
resulted in a lower BIC value (ΔBIC = ~ 2). This 
was repeated until a final suite of fixed effects 
were chosen. No clear suite of fixed effects 
emerged from the preliminary analysis. 
Therefore, the full suite of fixed effects, and a 
random intercept model were run.  

A similar top-down model building approach 
was undertaken with no clear fixed effects 
showing as significant. Visual inspection of the 
data (Figure 2) indicates a model with both 
random slope and random intercept is needed. 
This and a model with only random slope were 
run using REML. The model with a random 
intercept and random slope resulted in the 
highest BIC value by a relatively small margin, 
(ΔBIC < 3). This small margin coupled with the 
compelling visual evidence for both a random 
intercept and slope indicates the random slope 
and intercept model should be used.  

Fixed effects were again inspected with a 
random slope model. The elevation only model, 
(BIC = 29.7) and the radiation only model 
(BIC = 29.9) had the lowest BIC values. In each 
model, the respective covariate was significant 
at the α = 0.1 level (p-value = .07 and .09 
respectively). The next two lowest models were 

the elevation + radiation (BIC = 31.2) and the 
elevation*radiation (BIC = 34.6). However, these 
later models did not yield any significant 
covariates at the α = 0.1 level.  The fact that that 
elevation and radiation fail to remain significant 
when included in the same model is further 
indication of the weak relationship both of these 
demonstrate for this data. A qq-norm test 
performed on the residuals of the final model 
determined that the errors were not normally 
distributed. The square root of TFI was 
calculated and the model was rerun. This did not 
change the two models selected as the best 
models, but resulting p-values changes for 
elevation (p = 0.02), and RI (p = 0.06) 

A negative coefficient for elevation (-6x10-4) 
suggests that lower elevations show a higher 
TFI. A positive coefficient for radiation (1x10-3) 
suggests that larger RI values lead to higher TFI 
values. Thus, the more southerly slopes 
experience higher TFI values. The analysis 
suggests a weak link between terrain and snow 
stability, with more unstable conditions on 
northerly, high elevation slopes. These results 
are consistent with the conclusions of Birkeland 
(1997; 2001) for these data.  

 
3.5  Two- level mixed model for April data

 
 A similar analysis was performed on the 

April data (Figure 2). A random intercept and 
random slope model using the transformed 
response data (square root of TFI) yielded two 
significant covariates; elevation (p = .008) and 
radiation (p = .006). As with the February data, a 
negative coefficient for elevation (-5.9x10-4) 
suggests higher TFI values at lower elevations 
and a positive coefficient for radiation (1.9x10-3) 
suggests higher TFI values on more southerly 
slopes. 

The stability on this day was more tightly 
linked to terrain, with more unstable conditions 
again on the higher elevation, northerly slopes. 
These analyses are again consistent with the 
results of Birkeland (2001) and the more 
detailed analyses of Birkeland (1997).  

 
4.  FIXED EFFECT REPEATED MEASURES 
MODELS 
 

In a simple linear model, if the assumption 
of independent and identically distributed (iid) 
data holds, then var(ε) = σ2I where I is the 
identity matrix. When the assumption of 
independence fails to hold, the variance can 
best be thought of as var(ε) = σ2Ω, where Ω is 
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no longer a diagonal matrix and can be 
decomposed into Ω=DRD where D is the 
diagonal matrix of standard deviations and R is 
the correlation matrix. The main diagonal of a 
correlation matrix is naturally one.  

The nlme package in R has the ability to fit 
non-identity matrix correlations. The gls 
(generalized least squares) function is used to 
call a variety of these correlations. This paper 
explores two. The first is a correlation matrix that 
simply calculates all off diagonal elements as 
the same value resulting in a fixed effect 
repeated measures model. The second is a 
spatially explicit correlation matrix that accounts 
for the distance between each pair of points. We 
will discuss the first here, and the second in the 
section relating to spatially dependent data 
(section 5).   

 
4.1  Fixed effects model for February data

 
The best model for the February data using 

the fixed effects repeated measures analysis 
had the following covariates (regression 
coefficient shown in parentheses); elevation 
(-1.1x10-3), radiation (-2.0x10-3), 
angle (-6.0x10-2), elevation* radiation (1.2x10-5), 
and radiation* angle (6.1x10-4). 

All covariates and interactions in the 
chosen model are significant at the α=0.1 level; 
elevation (p = .06), radiation (p = .004), angle 
(p = .0005), elevation* radiation (p = .08), and 
radiation* angle (p = .003).  

Inferior model fit (ΔBIC > 11) is strong 
evidence that the fixed effects model does not 
explain the data as well as the mixed effects 
model. In addition, coefficients obtained from the 
fixed effects model will not be “population 
averaged”, thus any inferences made to the 
entire Bridger Range will not be as robust.  
 
4.2  Fixed effects model for April data 

 
The model chosen using the fixed effects 
repeated measures analysis had the same fixed 
covariates as the model chosen using the mixed 
effect analysis. The coefficients for elevation 
(-5.9x10-4) and radiation (1.9x10-3) were 
essentially identical. Both have essentially the 
same BIC value (BIC = 19.55), indicating that 
both fit the data equally well.  
 
5.  FIXED EFFECTS SPATIAL LINEAR MODEL 
 

With spatially dependent data sets, it is 
generally assumed (though not necessary) that 

the effect of distance is not dependent on 
direction (isotropy) or geographical location 
within the study area (stationarity) (Fortin and 
Dale, 2005). There are modeling approaches 
that can address egregious violations in each of 
these assumptions in a linear spatial model, but 
they will not be discussed here. Typically the 
patterns created from endogenous processes 
are referred to as spatial autocorrelation. The 
term spatial dependence is used here to define 
patterns generated from both exogenous and 
endogenous processes (Fortin and Dale, 2005). 

Both the nlme package in R and the PROC 
MIXED procedure in SAS can adequately 
handle most spatial linear models for continuous 
data. Both allow for the following correlation 
structures; exponential, Gaussian, linear, and 
spherical. R can additionally utilize the rational 
quadratic correlation structure. SAS can run the 
Matern and power correlation structures as well.  

Methods that address spatially dependent 
data can be divided into two basic groups, 
characterization and adjustment, (Littell et al., 
2006). The former typically is used to estimate 
covariance parameters and characterize the 
nature of correlation. The focus of this paper is 
on the latter, to remove the effects of spatial 
dependency in order to obtain more robust 
estimates of treatment effects. For an excellent 
introduction to adjustment models see chapter 
10 of Hunsaker (2001).  

The most important summary analysis 
when inspecting spatially dependent data (or 
data thought to be spatially dependent) is the 
semivariogram. The semivariogram can be 
defined in different ways. The x-axis is generally 
Euclidean distance between any two points. The 
y-axis can be one-half the variance of the 
difference between two observations (the default 
in SAS), or one minus the correlation between 
two observations (the default in R). The purpose 
of these two choices is identical. The intent is to 
estimate the following; the distance at which two 
observations can be thought of (or modeled as) 
independent (range), the variance that 
corresponds to the range (sill), and the distance 
at which two observations are considered to 
have a correlation of 1 (nugget). The shape of 
the function that best fits the semivariogram 
determines which spatial correlation model 
should be used.  

The April data, square root of TFI, will be 
used as an example (Figure 3). A similar 
semivariogram is generated when using 
February data. The semivariogram indicates no 
spatial dependency. 
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In addition to fitting all observations at 
once, semivariograms for various classes of 
data were generated. It was thought that 
perhaps stability tests performed on similar 
aspects but large distances away from each 
other would be more correlated than tests 
performed near each other but on dissimilar 
aspects. This was investigated, but no spatial 
dependency was detected in TFI collected in 
April or February.  

 

 
The model was fit using the gls function in 

nlme. The fitted model was a much poorer fit 
than the models fit without spatial correlation, 
(ΔBIC > 20). This is expected, since the addition 
of parameters did not help reduce the variance. 
This was true for February data as well. This 
result is strong evidence that no spatial 
dependency is present in the TFI data.  
 
6.  ORDINAL LOGISTIC REGRESSION WITH 
RANDOM SPATIAL EFFECTS 

 
Ordinal logistic regression (OLR) is an 

extension of logistic regression and has long 
been possible using standard statistical 
software. Recent software advances have 
allowed for ordinal logistic mixed models and 
ordinal logistic random spatial effect models. 

In standard logistic models, the response 
data is binary, typically representing the 
presence or absence of an event or state. The 
response data in an OLR can be categorical in 
nature. This is especially important for 
avalanche data since these models will handle 
categorical data such as rutschblock, 
compression, and stuffblock test results. If the 
data are ordered in a sensible fashion, they are 
considered ordinal. All forms of logistic 

regression are part of a family of models called 
generalized linear models. The name arises 
from the fact that these models can be made 
linear through the use of a link function. The link 
function, ( ).g  used for ordinal logistic 
regression extends the logit link function used in 
standard logistic regression. It is; 
 

[ ]( ) ( )
( )

P |
E log

1- P |
Y j x

g Y
Y j x

⎡ ⎤≤
= ⎢ ⎥

≤⎢ ⎥⎣ ⎦
         (2) 

 
Random effects can be constructed by 

adding random effects to the linear predictor. 
The full ordinal logistic model with random 
spatial effects can be represented in matrix 
notation as;  
 

[ ]( )E | Xig Y u iβ ε= +           (3) 

( )~ N 0,Diu  
 

where Xβ represent the data matrix and 
coefficients as in equation 1. The random errors, 
u, are considered normal and centered on zero. 
The errors, εi, are multinomial errors and not 
normally distributed.  

Our data include rutschblock results, which 
are naturally ordered from low stability (1) to 
high stability (7) (Föhn, 1989).  

The GLIMMIX package in SAS will be used 
to demonstrate a spatially correlated ordinal 
logistic regression. No standard package in R 
allows for this model to be run. 

 
 
 
 
 
 
 



Proceedings of the 2008 International Snow Science Workshop, Whistler, British Columbia 

An initial inspection of the Rutschblock data 
for February (Figure 4) indicated there might be 
spatial dependency within groups classified by 
aspect. The semivariogram does not suggest a 
strong relationship. 

Solving generalized linear models with 
spatial dependency is computationally intensive. 
Good starting values are important. PROC 
GLMIMX provides a method for searching a user 
specified range for a good starting value. This is 
recommended if no clear starting value is 
apparent from the initial inspection of the 
semivariogram or previous analysis. Since there 
was no clear indication of the correlation 
approaching one as the distance approached 
zero in all three groups, a model with no nugget 
was used.  

A spatial analysis using the February 
rutschblock data yielded three significant 
covariates. Radiation (p = .03), angle (p = .04) 
and the interaction of radiation and angle 
(p = .02) were significant at the α = .05 level. 
The intercepts for response category 2 through 
6 are, respectively; -19.17, -17.77, -17.07, 
-15.96, and -14.12. Due to lack of convergence 
to a sensible range parameter, and the failure of 
the iterative procedure to converge on a positive 
definite G matrix, the ‘nobounds’ option was 
used in the GLIMIMIX statement. This allows the 
G matrix (which is comprised of all the D 
matrices shown in equations 1 and 2) to be 
negative. The resulting variance parameter (the 
sill) is -0.02, therefore the G matrix is not truly a 
variance-covariance matrix. Furthermore, valid 
inferences about the group specific intercepts 
can not be made, nor should the range 
parameter be directly interpreted. This does 
however allow for valid inferences to be made 
regarding the fixed parameters (West et al., 
2007).  

The ordinal logistic regression with random 
spatial correlation analysis for April yielded 
elevation (p = .04), radiation (p = .0007), and the 
interaction between elevation and radiation 
(p = .0007) as significant covariates. Elevation 
had a negative coefficient (-0.015), radiation had 
a negative coefficient as well (-1.094) and the 
interaction has a positive coefficient (4.3x10-4). 
The intercepts for each response category, 1 
through 6, are respectively; 31.51, 33.36, 33.77, 
35.79, 37.12, and 38.77. The range parameter is 
15,000 meters with a sill of 10.21 (SE = 12.15). 

Comparisons using fit statistics to 
previously discussed models are inappropriate 
since they are not using the same data.  

 

7.  DISCUSSION 
 
For February data, the mixed effects 

repeated measures analysis resulted in two 
models for consideration, each with one 
covariate. These two models, one with elevation 
only and one with only radiation, had very similar 
BIC values (ΔBIC < 1).  

The fixed effect repeated measures 
analysis yielded a model with elevation, 
radiation, angle, elevation*angle and 
radiation*angle. While the three terrain variables 
and the associated interactions can all play a 
role in snow instability, this model has a 
significantly higher BIC score (ΔBIC > 11) 
suggesting this model is probably over fitting the 
existing data.  

A fixed effect spatial linear model was fit in 
R and this yielded no improvement in fit for the 
continuous TFI data. This was expected since 
the semivariogram indicated spatial correlation 
was probably not present.  

The ordinal logistic regression with random 
spatial correlation model was performed on the 
untransformed rutschblock data. Radiation, 
angle and the interaction between radiation and 
angle were found to be significant. This analysis 
confirms the importance of aspect in determining 
instability during the time the data were 
collected.  

April mixed effects repeated measures 
analysis yielded elevation and radiation as 
significant covariates. The fixed effect repeated 
measures model yielded the same covariates. 
This model was fit using the fixed effects spatial 
linear model with no improvement in fit. 

The ordinal logistic regression with random 
spatial correlation model was performed on the 
untransformed rutschblock data. Elevation, 
radiation, and the interaction between elevation 
and radiation were found to be significant 
covariates.  

Birkeland (2001) imposed several rules for 
model selection. Among these were restrictions 
on significance level for ordered and non-normal 
data, as well as a requiring that no 
autocorrelation exist. While these restrictions 
were well suited to the analysis performed, this 
paper has presented several ways to 
appropriately relax those restrictions. 

Mixed models are well suited for eliminating 
autocorrelation such that proper inferences can 
be made regarding the fixed effects of interest. 
In the case of the TFI data (transformed to 
TFIsqrt) collected in February, two valid models 
are presented here that were not presented in 
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Birkeland (2001). These two univariate models, 
one with elevation and the other with radiation, 
did not meet Birkeland’s criteria for achieving a 
significant p-value at the α = .05 level. However, 
they are presented here for comparison.  

Using a spatially dependent ordinal logistic 
regression analysis, a valid model was obtained 
for the February rutschblock data. This model 
has three significant covariates, radiation, angle, 
and the interaction between the two (all 
significant at the α = .05 level). No valid model 
using only terrain covariates was presented by 
Birkeland (2001) in the original analysis.  

When inspecting the April TFI data 
(transformed to TFIsqrt), no differences were 
found in the analysis of terrain variables. Both 
the results presented here and the original 
results (Birkeland, 2001) suggest that elevation 
and radiation (and no interaction) are the only 
significant terrain covariates.  

When analyzing the rutschblock data using 
a spatially dependent ordinal logistic regression, 
the same covariates, elevation and radiation 
were shown to be significant. Birkeland added 
an additional covariate, UTM meters east that 
showed to be significant. That was not repeated 
since the spatial correlation was modeled using 
a random effect.  
 
8.  CONCLUSION 

 
By modeling spatial correlation, either 

directly in the form of a correlation matrix, or 
indirectly in the form of repeated measures 
model, more rigorous inferences can be made 
on the covariates of interest. In this case those 
are terrain variables; elevation, slope angle, and 
radiation index.  

Using an ordinal logistic model, with or 
without spatial correlation can increase 
efficiency when analyzing categorical data and 
lead to more robust inferences.  

Example R code and SAS code can be 
found at www.crazymountainresearch.org. 
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