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ABSTRACT. Assessing snow stability requires a holistic approach, relying on avalanche, snowpack and
weather observations. Part of this assessment utilizes stability tests, but these tests can be unreliable due
in part to the spatial variability of test results. Conducting more than one test can help to mitigate this
uncertainty, though it is unclear how far apart to space tests to optimize our assessments. To address this
issue we analyze the probability of sampling two relatively strong test results over 25 spatial datasets
collected using a variety of stability tests. Our results show that the optimal distance for spacing stability
tests varies by dataset, even when taking the sampling scheme and stability-test type into account. This
suggests that no clear rule currently exists for spacing stability tests. Our work further emphasizes the
spatial complexity of snow stability measurements, and the need for holistic stability assessments where
stability tests are only one part of a multifaceted puzzle.

INTRODUCTION
Snow avalanches are a significant hazard in mountainous
areas worldwide. In the United States, avalanches kill about
30 people annually, more than the average annual death toll
due to earthquakes or other mass movements (Voight and
others, 1990). Determining avalanche conditions requires a
holistic approach, whereby a person assesses the terrain,
weather and current snowpack conditions (Fredston and
Fesler, 1994; McClung and Schaerer, 2006; Tremper, 2008).
Evaluating snowpack conditions can be particularly challen-
ging. To assist in this challenge, avalanche forecasters employ
snow stability tests to assess the potential for avalanching
when they do not observe obvious signs of instability.

A variety of snow stability tests exist, including the
compression test (Jamieson, 1999), stuffblock test (Birkeland
and Johnson, 1999), quantified loaded column test (Landry
and others, 2001), rutschblock test (Föhn, 1987a) and shear
frame test (Perla and others, 1982). Newer tests are also
becoming available, such as the extended column test
(Simenhois and Birkeland, 2009) and the propagation saw
test (Gauthier and Jamieson, 2008). The procedures for these
(and other) tests are outlined by Greene and others (2009).
All these tests provide the observer with valuable informa-
tion, but there is also a great deal of uncertainty associated
with test results. In fact, work shows that most tests generally
have a false stability rate around 10%, meaning that on
unstable slopes there is approximately a 1 in 10 chance of
obtaining a stable test result (Birkeland and Chabot, 2006).
This value is too high since making such an error could well
result in serious injury or death. A primary reason for this
false-stability rate may be the large amount of spatial
variability on potential avalanche slopes (Schweizer and
others, 2008).

Birkeland and Chabot (2006) suggest conducting more
than one stability test on a slope to minimize the chances of
incorrectly assessing an unstable slope as stable, while

Schweizer and Bellaire (2009) propose conducting up to
two sets of two tests 10–15m apart, depending on the
results of the first set of tests. However, neither study offers
guidance for optimizing test spacing. Test spacing should
insure that test results are not spatially autocorrelated,
thereby minimizing the chances of obtaining two mislead-
ing test results on the same slope. Schweizer and others
(2008) review several studies with varying autocorrelation
lengths, and suggest, based on limited analysis, spacing
tests at >10m.

Given the nature of many snow stability spatial datasets,
we need new techniques to assess optimal test spacing. The
purpose of this paper is to comprehensively evaluate the
probability of obtaining two stable test results. This is done
by examining 25 datasets on the spatial variability of slope
stability from different mountain environments around the
world. Assessing slope stability requires searching for
instability, so our technique quantifies the distance at which
an observer is unlikely to obtain two ‘strong’ test results. We
initially define a strong test as one that previous literature
defines as a stable test result, and we then examine the 75th
percentile of our data to better understand the spatial
patterns that exist in those datasets. In essence, we are
asking, ‘Given a single strong stability-test result, at what
distance do we minimize our chances of collecting a second
strong stability-test result?’ Our goal is to examine the range
of these optimal distances for our datasets to provide
guidance for backcountry recreationists and avalanche
professionals for optimizing stability-test spacing.

METHODS
Data
Our data come from diverse sources, utilizing four different
snow stability tests and a variety of spatial layouts. The
support, spacing and extent (Blöschl, 1999) varies between
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the datasets (Table 1). Though this variability adds
complications to our comparisons (Kronholm and Birke-
land, 2007), we think we have enough datasets with similar
spatial layouts to compare them against each other in
addition to comparing them with different datasets. We
provide a brief discussion of each dataset based on the
stability tests used, and refer the reader to the original work
for more in-depth descriptions of the data.

The first ten datasets that we analyze were collected by
Landry and others (2004) utilizing the quantified loaded
column test (QLCT; Landry and others, 2001). The QLCT
involves manually pressing down on a 0.30m� 0.30m rigid
plate with a gauge to assess the vertical force necessary to
fracture a buried weak layer. Measurements of slope angle
and slab shear stress allow the calculation of weak-layer
shear strength and an associated stability index. Collected in
southwest Montana, USA, each of these datasets involved
five sets of ten closely spaced (0.50m) measurements within
a 30m�30m area (Table 1; Fig. 1).

Our next seven datasets used the shear frame (SF) test
(Perla and others, 1982; Föhn, 1987b) to quantify snow
stability. These datasets were collected by Logan and others
(2007) and Lutz (2009). The shear frame quantifies the
shear strength, while associated measurements of slope
angle and slab shear stress allow the calculation of a
stability index. We also collected these data in southwest
Montana. Each dataset consists of around 70 measurements
of about 0.16m� 0.16m sampled in a 14m� 14m area,
with a minimum distance between tests of 0.50m (Table 1;
Fig. 1).

Our next five datasets index snow stability using the
stuffblock (SB) test (Birkeland and Johnson, 1999) and have
not been published before. The stuffblock provides ordered
data based on the height from which a nylon sack filled with
4.5 kg of snow must be dropped onto a shovel to fracture a
buried weak layer in an isolated column of 0.30m�0.30m.
The spatial layouts of our stuffblock data vary between our
five datasets. We collected two datasets concurrently with
Landry and others (2004) using that spatial layout, and two
datasets concurrently with Hendrikx and others (2009) using
that spatial layout. Our final stuffblock dataset utilized the
same slope and a similar layout to Logan and others (2007),
but was collected during a different winter (Table 1; Fig. 1).
Southwest Montana again served as our study area for these
five datasets.

Compression tests (CTs; Jamieson, 1999) index the snow
stability for our next two datasets, which we collected
adjacent to New Zealand’s Mount Hutt ski area, in the

Eastern Coastal Range of the South Island. Compression
tests are similar to stuffblock tests, with the same
0.30m�0.30m support, but the load to cause weak-layer
fracture is provided by a person tapping on a shovel rather
than dropping a nylon sack of snow onto the shovel.
Hendrikx and Birkeland (2009) compare one of these
datasets with extended column test (Simenhois and Birke-
land, 2009) results, but none of the three datasets has been
analyzed in detail or presented in a refereed publication.
The spatial layout of the data is the same as the work by
Hendrikx and others (2009), with a measurement spacing
of 10m and a larger extent than the other datasets
(Table 1; Fig. 1).

Our final two datasets utilize the rutschblock (RB) test
(Föhn, 1987a). Developed in Switzerland, the rutschblock
involves a skier progressively loading a large (2m�1.5m),
isolated block of snow until a buried weak layer fractures.
Campbell and Jamieson (2007) collected these data in
Canada’s Columbia Mountains; we utilize data from their
figures 6 and 9 for our analyses. The spatial layout of the
data consists of regular grids (Table 1; Fig. 1).

Of our 25 datasets, 22 (88%) are at or below treeline,
and 18 (72%) are not significantly affected by the wind
(Table 2). The layer of interest was a persistent weak layer in
23 of the datasets (92%), while in two cases the weak layer
consisted of decomposing fragments of precipitation parti-
cles. Slope elevations varied from 1900m to almost
2700m, while slope angles varied from 258 to 348 (Table 2).
Most of the slopes (datasets 1–23) were chosen for what
observers believed were reasonably consistent snowpack
conditions across the slope. In other words, these slopes
were selected because they appeared to be sites that could
be used by an experienced observer as a test slope (Greene
and others, 2009).

Data analysis
Our data analysis focuses on the following question: If a
person samples one strong stability test, at what distance will
that person minimize their chances of sampling a second
strong test? This analysis requires defining a threshold for
what constitutes a strong stability-test result. For the stability
indices calculated using the shear frame and quantified
loaded column tests, we chose a value of �2 based on Föhn
(1987b), who stated that stability index values �1.5 suggest
relatively stable conditions. Our threshold for rutschblock
numbers is �6 (Föhn, 1987a), for stuffblock drop heights is
�0.50m (Birkeland and Johnson, 1999) and for compression
tests is �21 taps (Jamieson, 1999).

Table 1. The spatial datasets utilized for this paper

Datasets Source Stability test* Support Smallest spacing Max. extent Threshold{

m2 m m

1–10 Landry and others (2004) QLCT 0.09 0.5 28 �2.0
11–16 Logan and others (2007); Lutz (2009) SF 0.025 0.5 13 �2.0
17–21 Unpublished SB 0.09 0.5–10 72 �0.5m
22–23 Unpublished CT 0.09 10 64 �21 taps
24–25 Campbell and Jamieson (2007) RB 3.0 2.5 36 �6

*QLCT: quantified loaded column test (Landry and others, 2001); SF: shear frame (Perla and others, 1982); SB: stuffblock (Birkeland and Johnson, 1999);
CT: compression test (Jamieson, 1999); RB: rutschblock (Föhn, 1987a).
{Defined threshold for a ‘strong’ stability test.
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Our analysis follows three main steps:

1. We examine the cumulative distribution function (CDF)
for each spatial dataset to identify which datasets consist
primarily of measurements either above or below our
prescribed stability thresholds.

2. We bin the data into different distance categories, and for
each distance category we compute the probability of
obtaining two strong test results. This is computed as the

number of data pairs in a given distance category where
both points in the data pair are defined as ‘stable’ (i.e.
above the stability threshold), divided by the total
number of data pairs in that distance category. This data
analysis strategy is similar to an indicator variogram that
is commonly used in geostatistics (e.g. Webster and
Oliver, 2001). Such indicator variograms summarize the
overall spatial variability of binary data in each distance
category, which is proportional to the fraction of data

Fig. 1. The spatial layout (m) varied for our different datasets. Note that in grids 1–19 there are multiple adjacent pits.
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pairs where one point is stable and the other is unstable.
Our approach of focusing attention on the fraction of
data pairs in which both stability estimates are classified
as stable is favored over more standard geostatistical
methods because it directly addresses the question under
investigation.

3. In some cases, using the stability thresholds defined
above does not allow us to explore the spatial variations
that exist in those data. For example, if all the measure-
ments in a dataset are so strong they are above the
threshold, then the probability of making two strong
measurements at any distance is 1, and if all measure-
ments are less than the threshold the probability is 0. As
such, we also conducted an analysis whereby we define
the threshold as the value of the 75th percentile of each
specific dataset. This allows us to investigate the chances
of obtaining two relatively strong measurements in a
given dataset, and to explore more effectively the spatial
relationships in each dataset.

RESULTS AND DISCUSSION
Our datasets are diverse, demonstrating a range of CDFs
(Fig. 2). The CDFs also graphically demonstrate the con-
tinuous (QLCT and SF tests) and ordered (SB, CT and RB
tests) nature of our different datasets. A number of our
datasets (24%) represent quite stable conditions, with all
values above the strong stability-test thresholds we set for
that particular test (datasets 2, 8, 9, 13, 14 and 15 (Table 3)).
On the other hand, a few of our datasets (16%) represent
much less stable conditions, with all test results below our
set thresholds (datasets 17, 18, 22 and 23 (Table 3)). We
were still able to sample these less stable slopes safely
because the slope angles are generally just below the
threshold for avalanching. The diversity of our data allows us
to investigate a wide range of conditions and tests.

Determining an optimal distance to minimize the
chances of obtaining two strong stability tests is difficult
for many of our datasets when we use our predetermined
thresholds for a strong stability test (QLCT �2.0m, SF
�2.0m, SB �0.50m, CT �21m, RB �6m) (Fig. 3). Some
datasets show a clear differentiation between various
distances, such as dataset 6 where we can see that distances

between tests of either 0–5m or 15–20m have the greatest
probability of having two strong tests, while the other
distances minimize that probability. However, there are a
number of datasets where there is little differentiation
between distances (e.g. dataset 15).

If we adjust our strong stability-test results from the set
thresholds discussed above to �75th percentile for each
dataset, the spatial patterns in each dataset become much
more evident. This allows us to more effectively explore how
to space tests to minimize the probability of sampling two
relatively strong test results in a given dataset (Fig. 4). For
most of the datasets, there are clearly certain distances (or a
range of distances) which minimize that probability (Fig. 4;
Table 3). Thus, an optimal sampling strategy that searches for
instability with two tests on a slope will aim to conduct
those tests at that distance.

Interestingly, our datasets demonstrate a range of optimal
sampling distances, even when taking into account the
sampling strategy and the test (Fig. 4; Table 3). For example,
datasets 1–10 use the QLCT and the same basic sampling
layout (Landry and others, 2004). Within these data the
distance required to minimize the probability of sampling
two strong tests varies from 10 to 30m (30m is the
maximum extent of these samples). In some datasets (e.g.
2 and 3), a distance of 10–15m will minimize the
probability of sampling two strong tests. However, in dataset
9 a distance of 10–15m maximizes this probability. We do
see that close distances (<5m) are unlikely to minimize the
chances of two strong tests and, in general, longer distances
tend to be better. In 8 of the 10 QLCT datasets (80%) the
longest distance has the lowest, or close to the lowest,
chance of two strong tests. However, in four of these cases
there is also a minimum at a shorter distance, and dataset 7
actually has a spike in the probability at distances of 25–
30m (Fig. 4). Thus, for these data there appears to be no
clear rule of thumb for optimal stability-test spacing.

Our next six datasets (11–16) all utilize the shear frame
test and have the same layout (Logan and others, 2007; Lutz,
2009). Like the QLCT datasets, these data also demonstrate
some striking variability in results (Fig. 4; Table 3). In half of
these datasets the probability of sampling two strong tests is
minimized at a distance of 12–14m (datasets 13, 14 and 16),
which is the maximum extent of this sampling layout.
Conversely, in one case (dataset 12) we minimize the

Table 2. Slope characteristics associated with our datasets

Dataset(s) Location Altitude Treeline?* Aspect Approx. slope
angle

Wind-affected? Weak layer

m 8

1 Montana, USA 2250 BTL ESE 32 No Depth hoar
2–4 Montana, USA 2320 BTL ENE 25 Yes Faceted crystals
5 Montana, USA 2200 BTL ENE 25 No Faceted crystals
6 British Columbia, Canada 2150 TL SE 28 Yes Surface hoar
7 Montana, USA 2240 BTL E 26 No Depth hoar
8–12, 17–19 Montana, USA 2340 BTL NE 28 No Surface hoar
13–16 Montana, USA 2670 BTL E 27 No Surface hoar
20–21 Montana, USA 2530 BTL WSW 31 No Depth hoar
22–23 Canterbury, New Zealand 2010 ATL NW 30 Yes Decomposing fragments
24 British Columbia, Canada 2000 ATL ENE 28 Yes Surface hoar
25 British Columbia, Canada 1900 TL NE 34 No Surface hoar

*Location of site in relation to treeline (ATL: above treeline; TL: at treeline; BTL: below treeline).
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chances of sampling two strong tests at our smallest
sampling interval, 0–2m.

The five datasets (17–21) using the stuffblock test are
more difficult to compare because they use three different
sampling layouts. Two interesting datasets are 20 and 21,
both of which utilized a 10m by 10m sampling grid layout
used by Hendrikx and others (2009). In both of these
datasets, only a minimal chance of sampling two strong tests
exists at any distance (Fig. 4; Table 3). This may be because
spatial autocorrelation for these data only exists at distances
less than our 10m spacing.

The next two datasets (22 and 23) used the compression
test and the same spatial layout as datasets 20 and 21 (used
by Hendrikx and others, 2009). In these datasets the greatest
distances from 40 to 70m minimize the chances of sampling
two strong tests; however, dataset 22 also has an additional
minimum around 0–10m (Fig. 4; Table 3).

The final two datasets (24 and 25) utilized the rutschblock
test. Though the sampling layouts for these two datasets are
not identical, spacing for the tests is similar. Longer distances
(>30m) helped to minimize the probability of two strong
rutschblocks in both of these datasets, but an additional
minimum for the first was evident at 15–20m, while for the
second that minimum existed at all distances from 5 to 20m
(Fig. 4; Table 3).

As an alternative to discussing the datasets by test type or
layout, we can divide them by slope and snowpack
characteristics (Table 2). Though complicated by variations
in sampling layout and test type, this analysis is intended to
see whether any distinct patterns related to the slope
position or weak-layer properties emerge from our data.
Unfortunately, we cannot find any clear and convincing
pattern for our data. For example, the weak layer of interest
in 15 of our datasets (60%) is surface hoar, and the distances
that minimize the chances of sampling two strong tests in
those datasets range from 0–2m (dataset 12) up to 25–30m
(datasets 8, 9 and 17) (Tables 2 and 3). Faceted crystals
comprised the weak layer in four (16%) of our datasets, and
distances for minimizing the chances of two strong tests in
these datasets ranged from 10 to 30m. Likewise, the four
(16%) datasets fracturing on depth hoar had distances
ranging from 10 to nearly 80m depending on the test type
and sampling layout. We also had two datasets (8%) where
the weak layer was decomposing fragments, and in these
cases the distances ranged from around 10 to 70m (Tables 2
and 3). Thus, no patterns exist related to weak-layer grain
type. Dividing the datasets by whether they are above, at or
below treeline presents an equally complicated picture,
with a range of distances for each category. Likewise,
binning the datasets by stability, measured as the probability

Table 3. Summary statistics and distances which minimize the probability of sampling two strong (�75th percentile) stability tests for each of
our datasets

Dataset Name Test* Min 0.25 0.50 0.75 Max Thresh.{ Prob.
�Th.§

n Distance to
minimize two
strong (�75th

percentile) tests{

m

1 2001_Landry_BaconRind QLCT 1.232 1.727 1.841 2.208 4.393 2.000 0.380 50 25–30, 15–20
2 2001_Landry_BMSP_1 QLCT 3.672 4.564 5.110 6.710 9.644 2.000 1.000 46 10–15, 25–30
3 2001_Landry_BMSP_2 QLCT 0.936 1.300 1.674 1.775 2.110 2.000 0.100 20 10–15
4 2001_Landry_BMSP_3 QLCT 1.952 2.386 2.987 3.648 4.900 2.000 0.978 46 15–20, 25–30
5 2001_Landry_BLSP QLCT 1.312 1.585 1.704 1.882 2.967 2.000 0.211 19 15–30
6 2001_Landry_RoundHill QLCT 1.035 1.535 2.036 3.683 4.369 2.000 0.514 37 10–15, 20–30
7 2001_Landry_SPSP QLCT 0.803 1.523 1.897 2.132 2.979 2.000 0.404 47 15–20, 20–25
8 2002_Landry_LH_1 QLCT 2.021 2.389 2.498 2.646 3.607 2.000 1.000 50 25–30, 10–15
9 2002_Landry_LH_2 QLCT 2.488 2.896 3.069 3.210 4.395 2.000 1.000 48 25–30, 15–20
10 2002_Landry_LH_3 QLCT 1.731 2.108 2.370 2.642 3.311 2.000 0.880 50 15–20, 25–30
11 2004_LH_AZ SF 1.899 2.431 2.643 3.117 4.603 2.000 0.944 72 10–12
12 2004_LH_SF_NM SF 1.507 2.027 2.231 2.504 3.017 2.000 0.764 72 0–2
13 2004_Spankys_SF_AZ SF 2.064 3.226 3.517 3.871 4.693 2.000 1.000 90 12–14
14 2004_Spankys_SF_CO SF 2.085 2.687 3.103 3.362 3.985 2.000 1.000 72 12–14
15 2004_Spankys_SF_NM SF 2.421 3.171 3.415 3.627 4.529 2.000 1.000 72 6–8, 12–14
16 2004_Spankys_SF_UT SF 1.508 2.248 2.518 2.788 3.560 2.000 0.889 72 12–14
17 2002_Landry_LH1_SB SB 0 10 10 10 20 50 0.000 50 20–25, 25–30
18 2004_LH_SB SB 10 20 30 30 30 50 0.000 60 0–15
19 2006_LH_SB SB 10 30 30 40 80 50 0.244 45 10–12, 14–16
20 2008_Beehive_SB_1 SB 10 20 30 30 50 45 0.059 34 10–20, 60–80
21 2008_Beehive_SB_2 SB 0 20 20 40 80 50 0.147 34 60–80
22 2009_MtHutt_CT1 CT 2 8 12 14 19 21 0.000 30 0–10, 60–70
23 2009_MtHutt_CT_2 CT 10 13 13 14 17 21 0.000 25 40–70
24 2003_Campbell_Fig6 RB 2 3 4 5 6 6 0.222 63 15–20, 35–40
25 2004_Campbell_Fig9 RB 1 2 2 2 6 6 0.015 65 5–20, 30–35

*QLCT: quantified loaded column test (Landry and others, 2001); SF: shear frame (Perla and others, 1982); SB: stuffblock (Birkeland and Johnson, 1999); CT:
compression test (Jamieson, 1999); RB: rutschblock (Föhn, 1987a).
{Defined threshold for a ‘strong’ stability test (shown in Table 1).
{As shown in Figure 4.
§Probability that a measurement in the dataset is greater than our threshold of a ‘strong’ stability test.
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that a test within that dataset is greater than or equal to our
probability thresholds (Table 2), does not result in any easily
identifiable patterns.

Most of our datasets (72%) come from slopes that are
relatively unaffected by wind (Table 2). These datasets
exhibit the entire range of distances that minimize the
chances of two strong tests, from 0–2m all the way up to
60–80m (Table 3). Fewer datasets (28%) are from wind-
affected sites. Six of these seven wind-affected datasets have
distances greater than 10m. This hints that it may be

especially important to space stability tests at appropriately
large distances on wind-affected slopes to avoid sampling
two strong tests. However, this conclusion is based on a
limited number of datasets using different sampling strate-
gies and different tests, so it should be viewed with
appropriate scientific skepticism.

Independent of the method for dividing our datasets, no
clear patterns emerge and we cannot provide any concrete
guidelines for test spacing. In most situations, it is better to
space out tests by at least 5m rather than put them close to

Fig. 2. CDF for each of our datasets. The prescribed stability thresholds are shown as vertical dashed lines.
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each other. For example, in 23 of our 25 datasets (88%)
the optimal spacing of tests was >6m. However, we did
have three datasets (12%) where the optimal distance
was <6m, and the optimal distance to minimize the
probability of two strong tests in our other datasets varied
widely. In essence, our data suggest that the optimal
distance will likely vary from slope to slope and from
situation to situation.

The variability of our results is similar to the variations in
autocorrelation lengths found in other spatial variability

studies. For example, Kronholm and Schweizer (2003) and
Kronholm and others (2004) quantified lengths varying from
2 to >10m, Campbell (2004) and Campbell and Jamieson
(2007) found lengths of 1–14m, Birkeland and others (2004)
showed lengths of 5–8m, and Logan and others (2007)
found little or no autocorrelation. An advantage of our work
is that we do not look at a single autocorrelation length;
rather, our analyses investigate the spatial range of the data
to find the distance which minimizes the probability of
sampling two strong tests.

Fig. 3. The number of point pairs at each distance, and the fraction of two strong tests for each of our 25 datasets. A strong test result in this
figure is defined as the thresholds shown in Table 3, and by the vertical dashed lines in Figure 2.
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CONCLUSIONS
The optimal distance to space stability tests to minimize the
probability of sampling two strong tests varies between our
datasets and is independent of test type, spatial layout and
weak-layer crystal type (Tables 2 and 3; Figs 3 and 4). Our
results do show that this optimal distance is rarely <5m;
only two of our 25 datasets (8%) demonstrate this
characteristic. This is mostly consistent with previous
recommendations of spacing tests at least 10m apart

(Schweizer and others, 2008), and suggests that avalanche
forecasters and other practitioners should not necessarily
rely on two adjacent tests when searching for instability, but
that a longer distance may help to reduce the probability of
sampling two strong tests. However, the optimal distance is
still an open question since we can see cases in our data
where certain longer distances actually maximize our
chances of measuring two strong tests. In fact, our work
shows that there may be no such thing as an optimal

Fig. 4. The number of point pairs and the fraction of two strong tests for each of our 25 datasets. A strong test result in this figure is defined as
being �75th percentile of the dataset, allowing us to more effectively explore the spatial variability of each dataset.
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distance, but rather there are a range of suboptimal distances
that one would like to avoid, and these vary from slope to
slope and situation to situation.

It is not surprising that closely spaced tests generally do
not minimize the probability of sampling two strong, or
relatively strong, tests. Closely spaced tests should have
similar aspect, slope angle, wind effect and snowpack
structure and therefore would likely be similar. Of course,
occasionally we also have fairly remarkable variation at
these close distances; this is shown in some of our data (e.g.
datasets 12, 18 and 22), as well as in some previous research
(e.g. Landry and others, 2004; Campbell and Jamieson,
2007). However, even at the longer distances, we cannot
provide guidance for spacing tests, since our results vary
between datasets. This is also not unexpected. Each slope is
unique and has different characteristics that are known to
affect variability, such as slope substrate, wind patterns,
snow depth, slight changes in aspect, and differences in
energy balance across the slope that can affect weak layer
formation and persistence (Birkeland and others, 1995;
Campbell and Jamieson, 2007; Schweizer and others, 2008;
Lutz, 2009).

Improved procedures for spatial analyses might provide
more conclusive results. Unfortunately, this is a difficult task
when utilizing classic snow stability tests. There is a limit to
the number of data collectable in a day, especially if one
observer conducts the tests to minimize observer variability.
Further, collecting data over a period longer than 1 day is
likely to introduce temporal changes into the spatial analysis
due to the rapidly changing snowpack. Perhaps other
measurement techniques (e.g. radar) will provide larger
datasets, but currently such data only quantify snow
structure and not snow stability (Marshall and Koh, 2008).

From a practical perspective, the variability that exists on
slopes increases the uncertainty associated with our stability
assessments. One way to help lower this uncertainty is to
collect multiple stability tests from different parts of the
slope in a search for instability. Though it is generally better
to space these tests some distance, the optimal spacing will
vary from slope to slope as well as from situation to
situation. Thus, experienced observers are critically import-
ant for the collection and interpretation of good data. Of
course, ultimately a holistic approach is required, whereby
the experienced observer takes into account not only
stability-test results, but also weather, avalanche and snow-
pack observations to assess the avalanche potential.
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