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ABSTRACT 

 
 

 More winter recreationists are venturing into steep avalanche chutes and 

“extreme” terrain each year, and avalanche fatalities are increasing.  The slope-scale 

spatial variability of weak layers and slabs and how it relates to this complex terrain is of 

critical importance but poorly understood.  In this study, I use terrain parameters to model 

potential trigger locations (PTLs) of slab avalanches, which are defined based on slab 

thicknesses and presence of weak layers.   

 In a sample couloirs and chutes in Montana and Wyoming, field teams tracked 

and mapped persistent weak layers and slabs with probe sampling.  Terrain parameters 

derived from a one meter DEM were used to explore the relationships between PTLs and 

terrain.   Exploratory analysis, multi-model classification trees, and logistic regression 

models support strong relationships between terrain and PTLs.   

 Modeling of PTLs was highly successful for individual couloirs, with terrain-

based model success rates frequently exceeding 70% for depth hoar PTLs and 85% for 

near-surface weak layers.  However, models varied widely from couloir to couloir, with 

generally poor cross-validation results between couloirs, suggesting that the relationships 

between terrain and PTLs in each couloir are unique and highly complex.  For these 21 

couloirs in steep alpine terrain, parameters relating to wind deposition and scouring have 

the strongest association with PTLs..  Parameters with the greatest ability to discriminate 

PTLs are distance from the edge of a couloir, relative elevation, degree of wind exposure, 

and degree of terrain exposure.  The influences of these and other terrain parameters vary, 

depending on broader-scale terrain characteristics, prior weather patterns, and seasonal 

trends.  

 Practical implications from this study are numerous.  With an understanding of 

the broader scale influences and physical processes involved, we can use terrain to 

optimize stability test locations, explosive placements, or route selection.  The unique 

nature of each couloir means that simple rules relating terrain to PTLs will not apply, 

although couloirs in the same cirque generally share similarities. This work increases our 

understanding of how each parameter relates to the physical processes causing PTLs and 

how these relationships can vary.  This information will help to improve practical 

decision-making ability as well as future modeling efforts.   
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1. INTRODUCTION 
 
 

Avalanches pose a serious threat to human life and infrastructure in mountainous 

areas worldwide.  In the United States, avalanches kill more people on average annually 

than earthquakes, landslides, or other mass movement phenomena (Voight et al., 1990).  

Last winter season, 25 people were killed in avalanches in the United States 

(avalanche.org, 2011).  One of the best ways to mitigate avalanche deaths is an increased 

understanding of avalanches and the snowpack. 

The majority of avalanche fatalities are the result of slab avalanches (McClung 

and Schaerer, 2006).  Slab avalanches occur when a more cohesive slab of snow overlies 

a less cohesive weak layer and the conditions in the snowpack are conducive to weak 

layer fracture across a slope (Schweizer et al., 2003).  Snow accumulates and 

metamorphoses in layers that may or may not be continuous at various scales, from 

centimeters to kilometers, and are often difficult to predict.  A crucial element for 

improving avalanche prediction and mitigation is understanding the structure and spatial 

pattern of weak layers and slabs as they interact with the terrain.   

Numerous studies in the past half century have characterized the spatial 

variability of snow properties such as penetration resistance, shear strength, and stability 

test scores. Results vary tremendously due to differences in scale triplets (support size, 

spacing, and extent of measurements), field methods, analysis methods, and natural 

variability.  Schweizer et al. (2008) provide a comprehensive review of this previous 

work. There has been limited success in predicting and explaining the observed 

variability, particularly with regards to terrain.  Furthermore, due to the challenging 
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nature of working in steep, avalanche terrain, these previous studies typically characterize 

the snowpack on uniform slopes less than 35
o
.  Few snow scientists have attempted to 

characterize or predict the snowpack in the highly variable and complex terrain that many 

skiers, snowboarders, climbers, and snowmobilers now venture into on a regular basis.  

The present study is unique in that it looks at spatial patterns of snowpack characteristics 

in complex alpine terrain by sampling patterns of weak layers and slabs in steep, snow-

filled gullies, chutes, or couloirs bounded on either side by rock or trees (hereafter 

referred to as couloirs for consistency).   

There are two primary objectives for this study. The first is to describe the spatial 

patterns and variability of various weak layers and slabs in couloirs.   Second, I explore 

how terrain parameters relate to snow weaknesses and which terrain parameters are most 

influential for predicting weaknesses in this complex terrain.   The practical implications 

of this research will be more effective avalanche control at ski areas, safer route selection 

in steep terrain, more effective selection of snow pit sites for assessing avalanche danger, 

and improved modeling capabilities for avalanche forecasting.   

This study examines the spatial variability of depth hoar, surface hoar, near-

surface facets, and slabs in a sample of 21 couloirs from the Madison Range of Montana 

and the Teton Range of Wyoming collected over two winters.  Avalanche probe profiles 

at numerous points describe the stratification in the snowpack.  Based on presence of 

weak layers and slabs, the snow observations are used to define “Potential Trigger 

Locations” (PTLs) within each couloir.  Exploratory statistical analysis, classification 
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trees, and logistic regression show how PTLs are related to a number of terrain predictors 

derived from a one meter digital elevation model (DEM).   
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2. LITERATURE REVIEW 
 
 

 The release of a slab avalanche requires the failure of a weak layer or weak 

interface underneath a snow slab (Schweizer et al., 2003).  Weak layers form through 

various processes, and a distinction is made between short-term weaknesses in the storm 

snow that occur as the new snow accumulates and persistent weaknesses.  The latter, 

termed persistent weak layers, are characterized by snow grains with weak structures that 

endure relatively long periods of time (McClung and Schaerer, 2006).  Because of their 

long-lived and fragile nature, persistent weak layers or the interface above them are often 

difficult to detect and are the causes of most avalanche fatalities.  From a sample of 186 

avalanches, Schweizer and Jamieson (2001) found that 82% failed on a persistent weak 

layer.  Persistent weak layers, which are the focus of this study, are classified into three 

main types depending on the processes that cause their formation and the resulting grain 

type: depth hoar, facets, and surface hoar. 

Weak Layers 

 
 

 Depth hoar forms near the base of the snowpack as a result of strong temperature 

and vapor gradients and relatively warm temperatures near the ground.  Metamorphism 

of grains in shallow, early season snowpacks with strong temperature gradients can result 

in the growth of poorly bonded and weak faceted or cupped grains.  Numerous studies 

have described the formation processes, rates of growth, and properties of depth hoar 

(e.g., Akitaya, 1974; Bradley et al., 1977; Giddings and LaChapelle, 1962; Sturm and 

Benson, 1997). Near-freezing temperatures near the ground and much colder air 
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temperatures at the snow surface are the driving forces behind depth hoar formation, and 

research has shown that depth hoar preferentially forms near shallowly buried rocks 

(Arons et al., 1998; Birkeland et al., 1995).  In a study of 90 human-triggered avalanches 

in Switzerland, approximately 20% failed in depth hoar or at the interface above depth 

hoar (Schweizer and Lütschg, 2001).  From a sample of 46 fatal avalanches in Canada, 

22% failed on depth hoar (Jamieson and Johnston, 1992).  Birkeland (1998) reported that 

6% of large backcountry avalanches investigated in southwest Montana over a five-year 

period failed on depth hoar.  

 Facets often form another dangerous persistent weak layer.  Numerous laboratory, 

field, and theoretical studies have demonstrated that facets typically form from rapid 

metamorphism near the surface of the snow caused by extreme temperature gradients 

(e.g., Armstrong, 1985; Fukuzawa and Akitaya, 1993; Morstad et al., 2007).  Birkeland 

(1998) describes the dominant processes for near-surface faceting: diurnal 

recrystallization, melt-layer recrystallization, and radiation recrystallization, all of which 

require a strong temperature flux near the surface of the snow.  Because crusts act as 

barriers against upward moving water vapor, faceting is typically enhanced below various 

crusts (Colbeck, 1991).  Facets are also frequently found above crusts because of the 

latent heat released from freezing wet or moist layers. The faceting process is likely 

enhanced due to low thermal conductivity of the faceted layer in relation to the crust 

(Colbeck and Jamieson, 2001).  Jamieson and Langevin (2004) showed that faceting 

associated with melt-freeze crusts can be favored at certain elevation bands with the 

optimal combination of freezing levels for subsequent storms.  Short-wave and long-



6 
 

wave radiation, as well as snow density and thermal conductivity,  are linked to facet 

formation (Slaughter, 2010), and aspects where crusts are thicker due to greater solar 

radiation favor facet development because more latent heat is released from the freezing 

crusts (Jamieson and Langevin, 2004).  Cooperstein (2008) found that southern aspects 

favored diurnal recrystallization in a field study from southwestern Montana.  Larger, 

more developed facets are expected to persist longer and take longer to gain strength 

(Colbeck, 1998).  Failure on a facets account for over 30% of the human triggered 

avalanches in the Swiss avalanche dataset (Schweizer and Lütschg, 2001), 59% of the 

avalanches from the Montana dataset (Birkeland, 1998), and 28% of the fatal Canadian 

avalanches (Jamieson and Johnston, 1992). 

 Surface hoar also forms an extremely fragile persistent weak layer.  The winter 

equivalent of dew, these feathery crystals form when water vapor sublimates directly 

from the air to the snow surface.  The conditions necessary for surface hoar formation 

have been the focus of many studies.  Lang et al. (1984) demonstrated that the crystal 

growth is associated with significantly cooler snow surface temperatures than the 

overlying air, which is typical during clear, cold nights.  Light air turbulence and 

humidity are required for grain growth (Colbeck, 1988; Hachikubo and Akitaya, 1997).  

Cooperstein  (2008) showed that aspect affects the growth of surface hoar, which was 

more prevalent on north aspects in southwest Montana due to differences in radiation 

supply.  In addition to validating previous findings, Slaughter et al. (2011) showed that 

incoming long-wave radiation and snow surface temperatures  are significant factors in 

surface hoar formation.   Surface hoar is easily destroyed by significant winds, and 
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because of the difficulty in modeling air turbulence in complex terrain with respect to 

both formation or destruction of surface hoar, it is nearly impossible to forecast for the 

presence of surface hoar remotely (Feick et al., 2007).  However, in wind sheltered 

forested openings, both Shea and Jamieson (2010) and Lutz and Birkeland (2011) were 

able to successfully model surface hoar growth based on skyview and its relationship to 

incoming and outgoing radiation.   Trees and terrain features shield longwave radiation 

emittance and prevent the rapid cooling of snow surface at night; thus inhibiting surface 

hoar growth (Shea and Jamieson, 2010).   Surface hoar accounted for 31% of the 

backcountry avalanches in the Montana dataset (Birkeland, 1998), 41% of the fatal 

avalanches in Canada (Jamieson and Johnston, 1992),  and approximately 20% of the 

human-triggered avalanches studied in Switzerland (Schweizer and Lütschg, 2001). 

Spatial Variability 
 
 

The spatial distribution of weak layers and snow strength is a primary concern for 

avalanche prediction and mitigation.  Spatial variability of the snowpack at various scales 

is a primary source of uncertainty in avalanche forecasting (Hageli and McClung, 2004).  

Wind during or after deposition of snow is a major agent in causing variability (Sturm 

and Benson, 2004), as well as precipitation, sublimation, radiation, temperature, and 

snow metamorphism as they interact with terrain.  These processes act on or over a range 

of various scales, from micro-structure to slope to mountain range, adding to the 

complexity of the problem (Schweizer et al., 2008).  

Conway and Abrahamson (1984) spurred an interest in slope scale spatial 

variability with a benchmark paper analyzing shear strength measurements in a spatial 
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context.  Based on highly variable shear strengths measured across crown walls and un-

fractured slopes, they suggested that weak zones (or deficit zones) of sufficient size may 

cause tensile failure, and depending on the distribution of strong zones (or pinning 

zones), the fracture could propagate across the slope to cause an avalanche.  Furthermore, 

the average strength of the slope may not be as critical as the minimum strength or the 

size of the deficit zones.  The research of Conway and Abrahamson (1984) brought to 

question the validity of point stability tests for assessing avalanche danger, and numerous 

studies followed exploring the variability of different snow strength or stability tests at 

the slope scale.   

Jamieson and Johnston (1993) performed a series of evenly spaced Rutschblock 

tests on six uniform slopes, free of rock outcrops or abrupt slope changes.  They found no 

large deviations from the median score (+/- 3 scores) from 277 tests, and showed that 

97% of their tests fell within +/- 1 score of the median. In highly contrasting results, 

Landry et al. (2004) compared stability indices on eleven uniform slopes and found 25% 

to 39% of their sites were not statistically representative of the stability of the slope.   

A number of other studies describe the spatial variability of point stability tests on 

relatively uniform slopes, typically ranging from 25
o
 to 40

o
 (Campbell and Jamieson, 

2007; Föhn, 1988; Hendrikx et al., 2009; Jamieson, 1995; Kronholm and Schweizer, 

2003; Stewart and Jamieson, 2002).  Disparate results can be attributed to natural 

variability and different field and analysis techniques.  Many studies have used different 

scale triplets: the support size of each measurement, spacing between measurements, and 

spatial extent of all of the measurements are not consistent and cause further variability in 
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results (Schweizer et al., 2008).  The effects of ground surface irregularities, terrain 

geometry, depth to failure layer, slope angle, solar radiation, proximity to the tops of 

slopes, trees, and “tree bombs” (snow falling from tree branches) are all cited as potential 

sources of variability (Campbell and Jamieson, 2007; Föhn, 1989; Jamieson, 1995). 

 To further understand the causes of spatial variability in the snow, Harper and 

Bradford  (2003) traced snow stratigraphy on a flat glacier in an attempt to isolate 

densification and layering processes from the influences of vegetation, topography, and a 

variable basal boundary. They noted little variability across tens of meters in layers 

recorded in snowprofiles, but observed discontinuities using higher resolution tools (a 

permittivity probe and radar imaging).  The variability in layers less than 1 cm thick was 

credited to primary processes such as wind gusts and changing snowfall rates or crystal 

form. Because these primary layers were well preserved, Harper and Bradford (2003) 

suggested that “the high spatial variability in snow stratigraphy commonly cited is 

typically due to the influence of local boundary conditions rather than feedbacks between 

primary and secondary densification processes alone.”  This reinforced the idea that 

spatial variability on avalanche slopes is driven by topography and ground cover. 

 As the character of spatial variability became an important parameter in avalanche 

release models (Schweizer, 1999), more studies attempted to quantify spatial variability 

using spatial statistics.  Kronholm and Schweizer (2003) and Kronholm et al. (2004) 

applied geostatistical techniques to characterize the spatial variability of stability tests on 

eight slopes and penetrometer profiles on one slope.  In nearly half of their samples, they 

found large slope-scale trends accounted for half of the variability in test scores, which 
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was partly attributed to slab thickness.  All of the layers analyzed with a penetrometer 

showed significant linear trends across the slopes.  The slope trends imply selection of 

stability site location is critical.  All of the weak layers tracked with the penetrometer 

could be modeled with semivariograms, but showed a wide range of model parameters.  

Like previous studies, their data supports the inference that the spatial structure of a weak 

layer or slab is not an inherent property, but rather a product of its location in space.  

Other spatial variability studies have had varying geostatistical results, again a product of 

natural variability, layer type, method, and scale, but autocorrelation lengths were 

frequently on the order of 10 m (Guy and Birkeland, 2010; Logan et al., 2007; Lutz and 

Birkeland, 2011) or poorly defined (Shea and Jamieson, 2010). 

With inconclusive results on the spatial variability of snow and weak layers, the 

problem of representative pit selection for assessing slope stability remains.  Birkeland 

and Chabot  (2006) documented a 10% to 15% “false-stable” rate from a database of 

3500 stability tests.  In other words, one out of ten slopes that were deemed safe by a 

stability test was actually unstable, an unacceptable rate when human lives are at stake.  

Birkeland and Chabot (2006) recommend digging more widely spaced pits to improve 

backcountry users‟ probability of finding weaknesses, but also note that there can be 

large areas of strong snow and relatively small weak zones; thus a second pit may only 

slightly improve the chances of finding the weak zone. This concept is supported by field 

research (e.g., Hendrikx et al., 2009; Stewart and Jamieson, 2002) in which clusters of 

high strength and low strength have been observed.  Birkeland et al. (2010) used a 

statistical approach on 25 previous spatial variability datasets and found that there is no 



11 
 

optimal test spacing for minimizing the probability of choosing two relatively strong pit 

locations, even when layer type, stability test type, or spatial layout are considered.   

Thus, it is critical to target weak areas for pit site selection.  While the presence of a weak 

layer doesn‟t necessarily indicate instability, targeting locations with weak layers 

improves the probability of finding instability and a better representation of the slope.  

Terrain Influences 
 
 

Nearly all of the spatial variability research points towards terrain as one of the 

best, and perhaps only, tools for targeting weaknesses.  While potential environmental 

causes for the observed spatial variability patterns at the slope scale are frequently 

discussed, statistical testing or modeling of these influences has been limited.  Exceptions 

include Birkeland et al. (1995), Lutz and Birkeland (2011), and Shea and Jamieson 

(2010).  

Birkeland et al. (1995) explained the spatial variations in snow strength surveyed 

on two inclined slopes, one uniform and one with a more complex substrate. The latter 

showed a complicated pattern of resistance, but the presence of rocks underlying the 

snow was found to significantly decrease resistance in a multiple linear regression model, 

although the relationship was statistically weak.   

Shea and Jamieson (2010) used Google Earth land cover images to model the 

effect of trees impinging on sky view and surface hoar growth.  Using several surface 

hoar events from sparsely forested slopes, they used a scaled linear relationship between 

averaged grayscale values and surface hoar size to model surface hoar crystal size after a 

surface hoar event and achieved reasonable results.  They tested their model on a similar 
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slope for a different event, and found that it correctly predicted size within 1.5 mm 60% 

of the time.   

Lutz and Birkeland (2011) used the relationship between incoming radiation and 

terrain to spatially model surface hoar strength and size.  They used a survey station to 

construct a 0.5 m digital elevation model (DEM) of topography and vegetation of the 

field site prior to the first snowfall.  A sky visibility model and meteorological parameters 

modeled incoming longwave and shortwave radiation.  Surface hoar size had significant 

linear correlations with all of the radiation parameters calculated, and shear strength was 

correlated with shortwave radiation.   Smaller, stronger surface hoar crystals were 

observed and predicted on the portion of the slope where: (1) incoming longwave 

radiation was greater due to re-radiation from trees (preventing cooling of the snow 

surface at night and crystal growth), and (2) incoming shortwave radiation was greater 

(inhibiting persistence by warming of the snow surface during the day). 

Also noteworthy is Birkeland‟s (2001) work, which modeled the relationships of 

terrain (coordinates, elevation, distance from ridge, radiation, and slope angle) with 

snowpack and stability data at the mountain range scale.  This study found surprisingly 

weak correlations with terrain on the first sampling day in February.  However, on the 

second sampling day in April, elevation had significant correlations (0.28 to 0.49) with 

all but one of the snowpack and stability variables.  Both distance from ridge and 

radiation also had a number of significant correlations.  When combining the effects of 

the terrain variables in multiple linear regression models, no valid models could predict 

the stability patterns observed on the first day.  For the second sampling day, elevation, 
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radiation, distance from ridge, and east coordinate were all terms that appeared in at least 

one of four significant models for the various stability indices.  None of these models 

explained more than 30% of the variance, indicating that many more complicating factors 

are involved.  Birkeland (2001) also suggested incorporating wind parameters in future 

models and incorporating finer-scale variability into future analyses.  

Previous studies in weak layer formation and spatial variability suggest that the 

influence of terrain is a very complex problem.  The successful slope-scale studies of 

Birkeland et al. (1995), Shea and Jamieson (2010), and Lutz and Birkeland (2011) were 

in part because they focused on the influence of one or two parameters, or one type of 

weak layer on a simplified and specific slope.  My goal is to incorporate all of the terrain 

parameters at our disposal that can be reasonably determined in the field or from a high 

resolution elevation map to model a more complete picture of snowpack evolution on 

complex slopes, including different weak layer types.  This type of snowpack modeling 

has never been done before, but a number of studies have correlated avalanche activity 

with a collection of terrain parameters (e.g., McClung, 2003; Schaerer, 1977). 

Of particular interest is the work of Gleason (1996), who characterized the terrain 

of avalanche paths on Lone Mountain and used several of the same slopes as the present 

study.  He measured terrain parameters in the field and analyzed their influence on over 

3500 recorded avalanche events.  Gleason (1996) found that steeper slope angles up to 

43
o
, higher elevations, aspects receiving more solar radiation, and aspects clustered 

opposite the prevailing wind are positively correlated to natural avalanche frequency 
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using stepwise multiple linear regression.  He also documented that avalanche frequency 

decreases for slopes above 43
o
 because of continuous sluffing. 

Using Geographic Information Systems (GIS) to derive terrain attributes is a 

common practice in avalanche studies (Marienthal et al., 2010).  For example, Maggioni 

and Gruber (2003) defined potential avalanche release areas using GIS by deriving slope 

angle, proximity to ridges, aspect, curvature, and elevation range from 10 m DEMs.  

They statistically identified mean slope, curvature, and distance to ridge as the most 

influential parameters in avalanche frequency.  Studies that have used GIS to derive 

terrain parameters frequently cite poor DEM resolution as a source of inaccuracy, and the 

10 m to 30 m DEMs commonly used are inadequate for describing some slope scale 

terrain parameters (Deems, 2002; Schmid and Sardemann, 2003; Schweizer and 

Kronholm, 2007).  This current study is unique in that it uses a one meter DEM to derive 

terrain parameters, a resolution that has only recently been possible due to high-

resolution airborne Light Detection and Ranging (LiDAR) technology. Presently, the best 

DEM source for the wide range of complex terrain features found in the alpine 

environment, especially gulleys, is LiDAR (Hopkinson et al., 2009).   

The application of DEM-derived terrain parameters for modeling snow depth or 

snow water equivalent in hydrological studies has had documented successes.  Although 

snow depth is not a measure of stability, stability test scores and snow strength have been 

empirically correlated to snow depth (e.g., Birkeland et al., 1995; Campbell and 

Jamieson, 2007; Kronholm and Schweizer, 2003).  Thus, terrain parameters used to 

predict snow depth may be useful for predicting weak zones.  Most hydrological research 
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has focused on the cirque or mountain range scale, and terrain predictors are commonly 

radiation or aspect, elevation, and slope or curvature (e.g., Blöschl et al., 1991; Elder et 

al., 1998).  Winstral et al. (2002) designed two parameters that effectively predicted the 

effects of wind: an index of shelter/exposure from upwind terrain to characterize the wind 

scalar, and a drift delineator, which used upwind breaks in slope to indicate zones of lee 

deposition.  Erickson et al. (2005) found that these two wind parameters, plus elevation, 

slope, and potential radiation were all significant predictors of snow depth using a 

complex mean geostatistical modeling approach when non-linear forms were employed.  

The wind shelter/exposure index had the greatest affect on predicted snow depth of these 

parameters.   

The work of Wirz et al. (2011) is of interest because they characterized snow 

depth on a steep rock face at a similar scale and resolution as this study.  Wirz et al. 

(2011) used a high-resolution terrestrial laser scanner to collect repeated snow depth 

measurements over two seasons. When comparing snow depths to slope angle, curvature, 

and roughness derived from a one meter DEM, only weak linear correlations were found 

(maximum=0.21). Based on comparisons of total snow depth observations and new snow 

distributions following snow/wind events and snow only events, they conclude that the 

wind-terrain interaction is the most dominant process for snow accumulation on steep 

faces.  Wirz et al. (2011) also observed that overall snow depth distribution patterns were 

similar over two winters, but single snow loading events had varying patterns from storm 

to storm.  Furthermore, spatial variability on the steep face was at least 30% more 
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variable and snow depth was always lower when compared to a similar site with gentler 

terrain.    

Summary 
 
 

In summary, persistent weak layers form under a complex regime of 

topographical and meteorological conditions.  The spatial variability of these layers and 

their properties is well documented but predictive ability is very limited.  Targeting weak 

layers is critical for slope stability assessment, and terrain is the most realistic tool for 

doing so.  The successful use of terrain parameters to model weak layer properties on 

several simple slope-scale studies as well as snow depth distributions at larger scales 

provides optimism for our ability to predict weak zones in more complex, avalanche 

terrain. 
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3. METHODS 

 

Study Sites 
 
 

 This study collected data from two mountain ranges with unique snow climates: 

the Teton Range in northwest Wyoming and the Madison Range in Southwest Montana 

(Fig. 1). 

 

 

Fig. 1.  Study sites in the Madison Range, Montana and Teton Range, Wyoming. 
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Big Sky Study Area 
 

Seventeen couloirs were sampled from Lone Mountain in the Madison Range, 

near Big Sky, Montana (Fig. 2 and Table 1).  Lone Mountain is located 50 km southwest 

of Bozeman.  Big Sky Resort and Moonlight Basin operate lift-served ski areas on the 

mountain.  Lone Mountain is a conical peak with several major ridgelines reaching its 

summit at 3403 m.  The upper 670 m of the peak consist mostly of steep talus and scree 

above treeline (Savage, 2006).  While Lone Mountain is situated in a region that is 

classified as an intermountain snow climate, its snowpack is usually characteristic of a 

continental climate due to its relatively colder and dryer winters (Mock and Birkeland, 

2000).  Few other peaks in the region approach the elevation of Lone Peak, so it receives 

exceptionally strong winds that are typically from the southwest to northwest. Winds are 

frequently in the 30-80 km/hr range, gusting in the 80-130 km/hr range several times 

each season.  Prevailing winds are generally west to southwest (Table 1). Annual alpine 

snowfall averages 1100 cm at an average snow water equivalent (SWE) of 7% (Savage, 

2006).  The cold temperatures and low snowfall lend themselves to strong temperature 

gradients in the snowpack, and depth hoar or facets near early season crusts are 

commonly widespread and can be very problematic (e.g., Savage, 2010).  

The Lone Mountain couloirs are on different headwalls and cirques above treeline 

(Fig. 2).  The couloirs were chosen based on logistical accessibility (with cooperation 

from Big Sky Resort and Moonlight Basin), the existence of snowpacks relatively 

unaffected by skiers or explosives, and their wide range of aspects and snowpacks.  



 
 

 

Fig. 2.  Seventeen couloirs were sampled from five cirques or headwalls on Lone Mountain, encompassing a wide range of 

aspects and characteristics.  Each dot represents a sample point.

1
9
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Table 1.  Characteristics of each couloir sampled. 

 

Couloir ID 

Mountain, 

Range 

Group/ 

Cirque 

Date 

Sampled 

Wind 

Station 

Prevailing 

Wind 

Azimuth 

# of 

Samples 

3rd Gulley 
1 

Lone Mountain, 

Madisons The Gullies 1/31/2010 

Lone 

Summit 
265

o
 119 

6th Gulley 
2 

Lone Mountain, 

Madisons The Gullies 2/9/2010 

Lone 

Summit 
260

o
 120 

7 Dwarves 

3 

Rendezvous 

Mountain, 

Tetons 

Granite 

Canyon 2/13/2010 

Rendezvous 

Summit 

250
o
 18 

A-Chute 

4 

Rendezvous 

Mountain, 

Tetons 

Granite 

Canyon 2/16/2010 

Rendezvous 

Summit 

250
o
 33 

Upper AZ1 
5 

Lone Mountain, 

Madisons 

Upper A to 

Z Chutes 2/11/2010 

Lone 

Summit 
265

o
 70 

Upper AZ2 
6 

Lone Mountain, 

Madisons 

Upper A to 

Z Chutes 2/28/2010 

Lone 

Summit 
270

o
 56 

Upper AZ3 
7 

Lone Mountain, 

Madisons 

Upper A to 

Z Chutes 3/9/2010 

Lone 

Summit 
265

o
 84 

Upper AZ4 
8 

Lone Mountain, 

Madisons 

Upper A to 

Z Chutes 3/11/2010 

Lone 

Summit 
265

o
 92 

Upper AZ5 
9 

Lone Mountain, 

Madisons 

Upper A to 

Z Chutes 3/11/2010 

Lone 

Summit 
265

o
 60 

Unskiabowl 
10 

Mt. Glory, 

Tetons Teton Pass 3/13/2010 

Rendezvous 

Summit 
250

o
 105 

Claw 
11 

Mt. Elly, Tetons Teton Pass 3/18/2010 

Rendezvous 

Summit 
250

o
 73 

Alder 
12 

Lone Mountain, 

Madisons Headwaters 12/9/2010 Jack Creek 
270

o
 97 

Cold Springs 
13 

Lone Mountain, 

Madisons Headwaters 12/9/2010 Jack Creek 
270

o
 74 

First Fork 
14 

Lone Mountain, 

Madisons Headwaters 12/10/2010 Jack Creek 
270

o
 99 

Jack Creek 
15 

Lone Mountain, 

Madisons Headwaters 12/11/2010 Jack Creek 
275

o
 104 

Rock Creek 
16 

Lone Mountain, 

Madisons Headwaters 12/11/2010 Jack Creek 
275

o
 89 

Trident 
17 

Lone Mountain, 

Madisons 

North 

Summit 1/28/2011 Great Falls 
240

o
 120 

Great Falls 
18 

Lone Mountain, 

Madisons 

North 

Summit 1/30/2011 Great Falls 
240

o
 101 

Tears 
19 

Lone Mountain, 

Madisons 

North 

Summit 2/4/2011 Great Falls 
240

o
 56 

Mullet 
20 

Lone Mountain, 

Madisons 

Lone Lake 

Cirque 2/27/2011 Great Falls 
230

o
 72 

Lone Lake 
21 

Lone Mountain, 

Madisons 

Lone Lake 

Cirque 3/5/2011 Great Falls 
230

o
 71 
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Field teams sampled two couloirs from the Gullies in January and February of 

2010, a northeast-facing headwall within the boundaries of Big Sky Resort (Fig. 3).  Prior 

to sampling, these couloirs were closed to skier traffic, but the snowpacks had been 

disturbed by daily explosive control on the faces above, shedding snow through the 

couloirs and onto their aprons. 

 

 

Fig. 3.  3rd Gulley (1) and 6th Gulley (2).  Red arrows indicate approximate location of 

uppermost sampling point. 

 

We sampled five couloirs from the Upper A to Z chutes, located on a south-facing 

headwall in Big Sky Resort, in February and March of 2010 (Fig. 4).  During the 

sampling period, the Upper A to Z chutes were progressively opened to skier traffic, and 

we accessed these couloirs before any significant skier traffic.   The layering in snowpack 
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was representative of a backcountry snowpack and undisturbed by explosives; Big Sky 

ski patrol does not apply explosive control until late season, when supportable sun crusts 

allow skiers to safely ski what is typically otherwise too shallow and rotten to ski.  Prior 

to sampling, several large ANFO explosives were discharged at the base of the wall 

without any major results, although a large natural avalanche released earlier in the 

season from a different part of the headwall than our sampling locations. While the 

stability of the slopes may have been altered, the natural layering of the slopes, which is 

the focus of this study, remained intact. 

 

 

Fig. 4.  Upper AZ1 (5), Upper AZ2 (6), Upper AZ3 (7), Upper AZ4 (8), and Upper AZ5 

(9). 
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In December of 2010, teams sampled five couloirs from the Headwaters, a north 

to northeast-facing cirque in Moonlight Basin ski area (Fig. 5).  These couloirs 

represented natural layering of backcountry conditions because we sampled them in the 

early season prior to any skier traffic.  Moonlight Basin ski patrol applied one or two 

rounds of hand-charges prior to our sampling without any avalanche results, and the 

disturbance to layers was confined to small bomb holes which we avoided during 

sampling. 

 

 

Fig. 5.  Alderson (12), Cold Springs (13), First Fork (14), Jack Creek (15), and Rock 

Creek (16). 

  



24 
 

In January and February of 2011, we sampled three couloirs from the North 

Summit, a northeast to northwest-facing bowl in Moonlight Basin (Fig. 6).  This area is 

closed to skier traffic early season, but saw a small amount of skier traffic before we 

sampled it, with the exception of Trident Couloir, which was closed prior to our 

sampling.  By the time the North Summit was opened to skier traffic and our sampling 

teams, a well-developed wind slab prevented skiers from impacting deep weak layers.  

Moonlight Basin ski patrol runs routine control work in this zone after opening it, but 

again, the deep weak layers appeared to remain intact. 

 

 

Fig. 6.  Trident (17), Great Falls (18), and Tears (19). 



25 
 

Our last two samples from Lone Mountain were collected in February and March 

of 2011 from west and northwest couloirs in Lone Lake Cirque (Fig. 7).  This area is out-

of-bounds from the ski areas, but sees occasional backcountry skiers.  

 

 

Fig. 7.  Mullet (20) and Lone Lake (21). 

 

Teton Study Area 
 

 Field assistants and I sampled four couloirs from the Southern Teton Range, near 

Jackson, Wyoming (Fig. 8 and Table 1).  Two of the couloirs were sampled in 

backcountry areas near Jackson Hole Mountain Resort, located on Rendezvous Mountain 

with an elevation of 3185 m.  We also sampled two couloirs near Teton Pass, where 
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Wyoming Highway 22 passes over the southern Tetons, 8 km west of Wilson, WY at an 

elevation of 2570 m.   

 

Fig. 8.  Four couloirs were sampled from the Southern Tetons. 

 

The Tetons generally receive more snowfall than Lone Mountain because Pacific 

moisture tracking along the Snake River Plain is intensified by orographic uplift as it 

encounters the Tetons.  Average annual snowfall near the summit of Rendezvous 

Mountain is 1280 mm at an average SWE of 8.5% (Kozak, 2002).  With more snowfall 
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and relatively warmer temperatures, the Tetons are classified as an intermountain snow 

climate (Mock and Birkeland, 2000).  Winds generally prevail from the west to southwest 

(Table 1).  All of the couloirs sampled from this region are below treeline and relatively 

more wind-sheltered than the terrain on Lone Mountain.  The sites selected are all 

backcountry locations, devoid of avalanche control work.  They are also in somewhat 

obscure locations and do not see much backcountry skier traffic. 

In February of 2010, field assistants and I sampled two north-facing couloirs in 

Granite Canyon, which is out of ski area boundaries and on the back side of Jackson Hole 

Mountain Resort (Fig. 9).  In March of 2010, we sampled two north-facing couloirs from 

Teton Pass (Fig. 10).  

 

 

Fig. 9.  Seven Dwarves (3). 
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Fig. 10.  Unskiabowl (10) and Claw (11). 

 

Weather History 
 

Weather patterns for the two winters sampled varied considerably.  The winter of 

2009-10 was an El Niño winter, with drier than usual conditions, and continental 

snowpacks developed in both study regions as the jet stream stayed south for most of the 

winter.  A severe cold snap in December faceted most of the early season snows to depth 

hoar, and this layer plagued the Tetons through late January (Comey, 2010).  The same 

layer plagued Southwest Montana for the entire season, causing the most active 

avalanche season in the Gallatin National Forest Avalanche Center‟s history (Staples, 

2010). 
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The winter of 2010-11 was a La Niña winter, with unprecedented snowfall 

amounts in Montana‟s Madison Range.  Copious early season snow fell with warm 

temperatures, creating one of the least reactive depth hoar seasons in southwest Montana 

in recent history (Staples, 2011).   Despite these favorable conditions, depth hoar and 

basal faceting was still widespread on Lone Mountain, with avalanches occurring near 

the ground throughout the season in the Madison Range (e.g., Fig. 11). 

 

 

Fig. 11.  A slab avalanche that was explosively triggered in the Headwaters on December 

9, 2010, adjacent to Cold Springs.  The avalanche failed on an early season weakness.  

Photo courtesy of B. Carpenter.  
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Field Methods 
 
 

 To sample each couloir, field assistants and I used an avalanche probe to track 

slabs and identifiable weak layers.  In most cases, we tracked depth hoar or faceted snow 

near the base of the snowpack.  For a number of couloirs, we were also able to track a 

weak layer that had recently formed near or at the surface of the snow (surface hoar or 

near-surface facets).  These near-surface weak layers could be easily uncovered with a 

hand pit and viewed with a hand lens if necessary.  At each location, we recorded total 

snow depth (HS), the thickness or presence of each identifiable weak layer (thickness of 

depth hoar or basal facets=HDH, thickness of near surface facets=HFC, presence of 

surface hoar= SH), the thickness of the snow slab overlying the weak layer which was 

typically composed of rounded grains and new snow (HSlab).  In the absence of depth 

hoar, HSlab was given a null value.  We also counted the number of and recorded the 

thickness of crust layers when applicable.  We paid careful attention to keeping the probe 

vertical during field measurements.  All vertical measurements were later converted to 

slope normal thicknesses or heights to account for variations in slope and to be consistent 

with crown profile protocols for avalanche observations (Greene, 2009).  Slope angles for 

these conversions were derived from a one meter DEM (See page 39).   

 In each couloir, we conducted at least one full snow profile at what I judged to be 

a representative location (Greene, 2009).  This also allowed for user calibration with the 

avalanche probe, making for easier and more reliable identification of weak layers of 

interest.  To maintain consistency, I conducted all of the probing except in two couloirs 

(Alder Couloir and Rock Creek Couloir), where logistical constraints forced another 
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trained field assistant to conduct probing.  When the snowpack was shallow or soft, field 

assistants or I dug hand pits to cross-verify probing results, and we would occasionally 

dig hasty shovel pits in areas of uncertainty.  In general, weak layers were easily 

identified from probing as soft or hollow layers.  Although user uncertainty exists with 

these techniques, the benefits of probing are quick data collection allowing a larger 

sample size and the ability to conduct research in steep terrain without burdensome 

equipment.  Furthermore, Schweizer (1993), Schweizer and Lütschg (2001), and 

McCammon and Schweizer (2002) found that avalanche failure is most common at the 

transition from a hard to a soft layer; although grain identification was not always 

possible, sharp transitions in hardness were easily observed with a probe.   

We collected 56 to 120 observations per couloir in a semi-systematic, stratified 

sampling scheme through repeated transects across the width of each couloir (Table 1).  

Though a random sampling design would have been optimal for geostatistical analysis 

(Kronholm and Birkeland, 2007), our sampling scheme was practical within the logistics 

of site accessibility, time constraints, preservation of snow, and safety in the challenging 

terrain.  Snow observations were made with approximately equal spacing of several 

meters, and the design was stratified in that we made an effort to collect samples without 

bias from the top and bottom, sides and middle of the path (Fig. 12).  Careful 

consideration was given to managing avalanche risk during sampling.  We only sampled 

couloirs during extended dry periods with low avalanche danger or after a slope had been 

tested with explosives.  Whenever possible, only one fieldworker was exposed on the 
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slope at a time.  On several occasions, time constraints or increasing avalanche danger 

did not permit a completely stratified sampling pattern.    

 

 

Fig. 12.  Example of the sampling strategy in each couloir. 

 

 Two field days differed in sampling strategy due to heightened avalanche 

conditions.  Several widespread and reactive surface hoar layers in A-Chute and Seven 

Dwarves prevented sampling teams from surveying the entire couloir.  Instead, we 

gathered stability test data in the top of the starting zones while on roped belay.  Our 

sampling strategy was to collect numerous sets of extended column tests (ECTs) across 

the width of the starting zone, with about five tests per set.  The ECT is a relatively new 

stability test which has shown to be an effective indicator of slope stability, and it is more 
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aligned with our current understanding of avalanche mechanics (Simenhois and 

Birkeland, 2006; Simenhois and Birkeland, 2009).  To perform the test, a 30 cm by 90 cm 

block of snow is isolated beyond the depth of the weak layer.  On one end of the isolated 

column of snow, a series of calibrated loading taps (n) are performed until the weak layer 

fails or until n=30.  If the failure propagates across the entire column in n or n+1 taps 

(recorded as “ECTP”), the test is interpreted as unstable.  If the column fails and doesn‟t 

propagate or doesn‟t fail (“ECTN” or “ECTX”), the test is interpreted as stable 

(Simenhois and Birkeland, 2006).  

 We utilized a Trimble GeoXH 2008 handheld GPS to map sampling locations and 

spatially overlaid these observations on a one meter DEM, which is detailed in the next 

sections.  Besides marking the location of snow observations, we also marked the 

boundaries of the couloirs, where the snow depth faded to zero and transitioned to talus 

or bedrock. These “zero” points are used for boundary reference and for terrain parameter 

analysis. 

 To assess the effectiveness of the sampling strategy for collecting unbiased snow 

observations throughout the entire couloir, I compared the distributions of several terrain 

parameters at the sampled locations with the distributions of these terrain parameters 

across the full length and width of the couloir. I used the Kolmogorov-Smirnov test (KS-

test) to compare distributions of elevation, aspect, and slope angle values derived from 

the one meter DEM at each sample point with the respective distributions for all of the 

cells contained within the boundaries of the sampled couloir.    The KS-test, which is 

described in more detail on page 55, tests whether two sets of data come from a 



34 
 

significantly different distribution (Massey, 1951).  A p-value less than or equal to 0.05 

rejects the null hypothesis that the two datasets come from the same distribution.  By 

conducting a KS-test on the distribution of the sampled terrain parameters versus the 

terrain parameters from the entire couloir, I am testing whether the sampling strategy 

adequately characterizes  the terrain of the complete couloir. 

 The results of the KS-test comparing the sampled locations to the each of the 

entire couloirs indicate that aspects and slope angles were fairly well represented by the 

sampling strategy, while elevation is moderately represented (Table 2).  Without 

considering Seven Dwarves and A-Chute because only the starting zones were sampled, 

only one other couloir has a significantly different distribution of sampled aspects versus 

aspects from the entire couloir.  Reasonably spaced transects across couloirs is an 

effective strategy for sampling changes in aspect without bias.  Nine of the nineteen full-

couloir samples have some form of bias in sampling with regards to elevation.  In some 

cases, wider sections of the couloir, especially near the aprons, were not sampled at the 

same density as the rest of the couloir, and these elevation bands are underrepresented in 

the sampling design.  In the example shown above for First Fork Couloir, the 

distributions of aspect and slope angle are adequately represented by the sampling pattern 

(KS-test p-values = 0.31, 0.69).  The similarities between the sampled distributions and 

actual distributions are apparent in the probability distribution functions (Figs. 13a and 

13b).  However, the KS-test has a significant p-value of 0.05 when comparing the 

sampled elevations with the distribution of all elevation cells in First Fork.  The 

probability distribution functions (PDFs) of these two datasets illustrate how a portion of 
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the upper elevation of First Fork Couloir is underrepresented by the sampling strategy 

(Fig. 13c), where the couloir is widest (Fig. 12)  In summary, the sampling design was 

generally unbiased with regards to the terrain in each couloir, but it was not always 

completely stratified for elevation.  

 

Fig. 13.  Probability distribution functions for values of (a) aspect, (b) slope angle, and 

(c) elevation for sample locations and all of the one meter cells within the boundary of 

First Fork Couloir.  Elevation is the only parameter with significantly different 

distributions, per the KS-test. 
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Table 2.  PTL criteria for each couloir, uncertainty in field measurements and GPS 

readings, and KS-tests on whether the sample points are representative of the entire 

couloir‟s distribution of aspect, elevation, and slope (significantly different distributions 

are indicated by bold font).    

Couloir 

Couloir 

ID# PTL Criteria 

Estimated 

Sampling 

Confidence 

Avg. 

Estimated 

Horizontal 

GPS 

accuracy 

(cm) 

Estimated 

GPS st. 

dev  (cm) 

KS-

test on 

aspect 

of 

couloir 

vs. 

sample 

KS-

test on 

elev of 

couloir 

vs. 

sample 

KS-

test on 

slope 

of 

couloir 

vs. 

sample 

3rd Gulley 1 

Presence of depth 

hoar & Slab > 15cm 90% 
49 36 0.96 0.38 0.82 

6th Gulley 2 

Presence of depth 

hoar & Slab > 15 cm 90% 
47 31 0.49 0.18 0.62 

7 Dwarves 3 

ECTP result or 

avalanche crown 100% 
14 7 0.01 0.00 0.00 

A-Chute 4a 

ECTP result on top 

layer of surface hoar 100% 
13 5 0.00 0.00 0.00 

A-Chute 4b 

ECTP result on 

lower layer of 

surface hoar 100% 

13 5 0.00 0.00 0.00 

Upper AZ1 5a 

Presence of depth 

hoar & Slab > 15 cm 100% 
51 23 0.06 0.00 0.01 

Upper AZ1 5b 

Presence of facets 

between two crusts 100% 
51 23 0.06 0.00 0.01 

Upper AZ2 6a 

Presence of depth 

hoar & Slab > 15 cm 100% 
45 28 0.63 0.00 0.30 

Upper AZ2 6b 

Presence of facets 

between two crusts 100% 
45 28 0.63 0.00 0.30 

Upper AZ3 7a 

Presence of depth 

hoar & Slab > 15 cm 95% 
97 181 0.69 0.96 0.85 

Upper AZ3 7b 

Presence of facets 

between two crusts 95% 
97 181 0.69 0.96 0.85 

Upper AZ4 8a 

Presence of depth 

hoar & Slab > 15 cm 95% 
43 20 0.85 0.61 0.57 

Upper AZ4 8b 

Presence of facets 

between two crusts 95% 
43 20 0.85 0.61 0.57 

Upper AZ5 9a 

Presence of depth 

hoar & Slab > 15 cm 95% 
118 74 0.45 0.12 0.75 

Upper AZ5 9b 

Presence of facets 

between two crusts 95% 
118 74 0.45 0.12 0.75 

Unskiabowl 10a 

Presence of depth 

hoar & Slab > 15 cm 85% 
240 237 0.77 0.61 0.46 

Unskiabowl 10b 

Presence of diurnal 

facets at the surface 95% 
240 237 0.77 0.61 0.46 

Claw 11a 

Presence of depth 

hoar & Slab > 15 cm 85% 
172 173 0.54 0.00 0.01 

Claw 11b 

Presence of diurnal 

facets at the surface 95% 
172 173 0.54 0.00 0.01 

Alder 12 

Presence of depth 

hoar & Slab > 15 cm 95% 
39 31 0.98 0.14 0.53 

Cold 

Springs 13 

Presence of depth 

hoar & Slab > 15 cm 95% 
33 30 0.35 0.02 0.19 
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Table 2 Continued. 

 

Mapping Points with GPS 
 
 

All snow observation points and “zero” points were mapped using a Trimble 

GeoXH 2008 handheld GPS receiver.  Post-processed differential corrections were used 

to improve the accuracy of the positions.  In post-processed differential correction, a base 

station with a known location and ideally within 50km of the handheld unit tracks what 

errors the satellite data contains.  Trimble‟s correction software processes this data to 

improve the accuracy of the data collected from the handheld unit (Trimble, 2008).  For 

this study, positions were differentially corrected using the nearest base station with post-

processing data available at the time of fieldwork.  The Lone Mountain positions were 

First Fork 14 

Presence of depth 

hoar & Slab > 15 cm 95% 
37 18 0.31 0.05 0.69 

Jack Creek 15a 

Presence of depth 

hoar & Slab > 15 cm 95% 
42 37 0.44 0.03 0.59 

Jack Creek 15b 

Presence of surface 

hoar at the surface 100% 
42 37 0.44 0.03 0.59 

Rock Creek 16 

Presence of depth 

hoar & Slab > 15 cm 95% 
67 74 0.49 0.00 0.87 

Trident 17a 

Presence of depth 

hoar & Slab > 15 cm 90% 
40 21 0.21 0.33 0.46 

Trident 17b 

Presence of diurnal 

facets at the surface 95% 
40 21 0.21 0.33 0.46 

Great Falls 18 

Presence of depth 

hoar & Slab > 15 cm 90% 
88 79 0.03 0.00 0.49 

Tears 19a 

Presence of depth 

hoar & Slab > 15 cm 95% 
40 15 0.41 0.64 0.35 

Tears 19b 

Presence of diurnal 

facets buried under 

thin slab 100% 

40 15 0.41 0.64 0.35 

Mullet 20 

Presence of depth 

hoar & Slab > 15 cm 95% 
11 5 0.89 0.11 0.05 

Lone Lake 21a 

Presence of depth 

hoar & Slab > 15 cm 95% 
43 24 0.97 0.03 0.12 

Lone Lake 21b 

Presence of diurnal 

facets buried under 

thin slab 100% 

43 24 0.97 0.03 0.12 
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corrected from either the UNAVCO Big Sky, MT station (~30km), the UNAVCO Ennis, 

MT station (~27 km), or the CORS Bozeman (MTSU), MT station (~54km).  While an 

effort was made to consistently process corrections from the closest station, UNAVCO 

Ennis base station data was not always readily available forcing the use of other nearby 

stations.  The Teton positions were corrected from the CORS Driggs (IDDR), ID station 

or the UNAVCO Moose, WY station, depending on the study location.  Distances to 

these stations varied but were all less than 35 km. 

Under optimal conditions, the GeoXH 2008 is capable of 10 cm accuracy with 

differential correction.  The GPS software reports an estimated root mean square (RMS) 

accuracies (68% confidence level) following post-processing based on the number of 

satellites, their elevation angle and signal strength, variances in correction type, and base 

station distance (Trimble, 2008).  However, these estimates are unable to account for a 

number of sources of error: (1) Multipath signals, when a GPS signal reflects off of an 

object before reaching the handheld device; (2) measurement noise caused by electrical 

interference from external sources; (3) Poorly surveyed base station positions; (4) 

Correction source datum errors (Trimble, 2008). The latter source of error is negligible 

because all of the base stations use the ITRF 2000 geographic datum which is equivalent 

within several cm to the WGS 1984 datum that the GPS originally references (Janssen, 

2009).   

The positions were differentially corrected in the ITRF 2000 geographic datum.  I 

imported the points into ArcMap and transformed the points to Universal Transverse 

Mercator (UTM) Zone 12 for analysis in the GIS using the NAD_1983_To_WGS_1984_5 
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transformation file (ESRI, 2009c).  ITRF 2000 and WGS 1984 are essentially identical, 

with up to 2 cm shift (Janssen, 2009).  After the points were correctly transformed to 

UTM Zone 12 and imported into ArcMap, they could be analyzed with the terrain 

parameters. 

Given the one meter DEM available for terrain analysis, 50 cm accuracy from the 

GPS is ideal.  Of the 21 couloirs, 14 have an average estimated RMS horizontal accuracy 

better than 50 cm, and all but three estimate sub-meter accuracy (Table 2).  Standard 

deviations are also reported in Table 2, although the distribution of errors in each couloir 

is typically positively skewed, with several large values and most of the errors falling 

below the estimated mean.  The average error is worst at Teton Pass where moderate tree 

cover inhibited satellite strength. 

During most field days, at least one reference position was recorded to check for 

accuracy.  These points were taken on ridgelines or obvious terrain features, and checked 

against the one meter DEM used for terrain analysis.  With the exception of the two 

Teton Pass sites, the GPS control positions did not appear to be inaccurate given the 

resolution of the DEM. This leads to the conclusion that the GPS inaccuracies were 

minimal during fieldwork.  For the Teton Pass sites, misalignment appeared to be on the 

order of 0-3 m, and this is considered in interpretation of statistical results. 

Terrain Parameters 
 
 

In the next stage of analysis, I derived suitable terrain parameters from a DEM in 

the GIS.   LiDAR data provide a one meter resolution DEM of the study locations.  

Compared to the 30 m DEMs that are readily available for most locations in the U.S., 
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McCollister and Comey (2009) demonstrated how one meter DEMs are far superior for 

calculating avalanche starting zone terrain characteristics.  They also suggest that 30 m 

DEMs give inaccurate calculations for slope and aspect.  The processed LiDAR datasets 

contain a bare-earth DEM with one meter resolution used for all parameters in this 

analysis.  These raster grids are projected in UTM Zone 12, so all of the GIS analysis was 

standardized on UTM Zone 12. 

I utilized ArcGIS (ESRI, 2009b) to derive twelve potential terrain parameters of 

snowpack structure (Table 3).  All of the analyses utilized the Spatial Analyst extension 

in ArcGIS. In the following paragraphs, I explain why each terrain parameter is included 

as a potential parameter and how it was derived in the GIS when relevant.  

Supplementary three-dimensional maps of each of the parameters for Lone Lake Couloir 

are provided in Appendix C.  Note that a number of the parameters described are likely to 

be correlated, but I accounted for this later in the modeling analysis.  

 Elevation, slope angle, and aspect are the most frequently used parameters for 

snow depth or snow strength modeling (e.g., Birkeland, 2001; Erickson et al., 2005). 

Elevation is a logical parameter because the snowpack can vary tremendously from the 

top of a couloir to the bottom due to varying wind or snow loading patterns, greater sluff 

accumulations near the bottom, and temperature lapses affecting precipitation and 

metamorphism differently (Birkeland, 2001; Dexter, 1986; Gleason, 1996; McClung and 

Schaerer, 2006).  Slope angle affects the structure of the snowpack.  Steeper slopes tend 

to shed snow accumulations while shallower slopes tend to accumulate avalanche debris 

and drifting snow (Gleason, 1996; McClung and Schaerer, 2006).  Aspect affects  
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Table 3.  Terrain parameters derived from a one meter DEM and used for analysis 

  

 

the snowpack through a number of mechanisms (McClung and Schaerer, 2006).  For 

example, research has addressed the role of aspect on grain formation and metamorphism 

(e.g., Dexter, 1986; Jamieson and Langevin, 2004).  The length and intensity of incoming 

solar radiation varies by aspect, which affects faceting and surface hoar growth 

(Cooperstein, 2008).  Also the effects of wind, whether it is wind-loading or scouring, 

change with aspect (Gleason, 1996).  Because of the circular nature of aspect data, I 

Parameter 

name Description Example Value(s) 

rel.elev 

Relative elevation within the couloir (%) from an 

elevation grid (in meters) 

0.892 (near the top); 

0.128 (near the bottom) 

slope Slope angle (degrees) 49.2
o
 

EW.aspect East-west component of aspect (Sine of aspect) -0.299 (from 342.6
o
) 

NS.aspect North-south component of aspect (Cosine of aspect) 0.954 (from 342.6
o
) 

prof Profile curvature at 10 m resolution  

-0.8(convex); 1.6 

(concave) 

plan Plan curvature at one meter resolution 

-8.5(concave); 

2.3(convex) 

rel.solar 

Relative solar radiation within the couloir (%), 

calculated from cumulative direct and diffuse insolation 

(in WH/m
2
) 0.441 

wind 

Wind exposure index; the difference between the cell of 

interest and the mean elevations in a 10 m radius 120
o
 

wedge into the seasonally averaged prevailing winds 

0.42(exposed); 

 -1.36 (sheltered) 

rel.view 

Relative viewshed within the couloir (%), based on 

visibility from the major windward ridgeline 

0.70 (more visible);  

0.2 (less visible) 

expo 

Exposure index; the difference between the cell of 

interest and the mean elevations within a 4 m donut-

shaped search surrounding the cell.  

0.32 (exposed); -0.46 

(sheltered) 

edge Distance from the couloir‟s edge (meters) 8.1 m 

wind.edge 

Distance from the windward edge of the couloir 

(meters) 19.7 m 
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created two parameters for analysis: an east-west contrast (EW.aspect) and a north-south 

contrast (NS.aspect) by taking the sine and cosine of aspect values in radians (Table 4).    

Table 4.  Reference table for the two aspect variables. 

Quadrant Azimuth EW.aspect NS.aspect 

NE 45 0.71 0.71 

E 90 1.00 0.00 

SE 135 0.71 -0.71 

S 180 0.00 -1.00 

SW 225 -0.71 -0.71 

W 270 -1.00 0.00 

NW 315 -0.71 0.71 

N 360 0.00 1.00 
 

Curvature of the slope is another parameter that has been used in previous models 

(Blöschl et al., 1991; Wirz et al., 2011).  I derived both plan (horizontal) and profile 

(vertical) curvature.  Plan curvature delineates where down-slope gullies and ridges 

occur, and thus may be a good predictor of snow depth because in the alpine terrain, the 

gullies are usually loaded while the ridges get scoured (e.g., Fig. 5).  Profile curvature 

allows identification of “rollovers” and aprons, where the snowpack structure is expected 

to differ significantly due to varying stresses in the snow and different loading/scouring 

patterns (McClung and Schaerer, 2006).  To effectively identify these terrain features, I 

reduced the resolution of the DEM to 10 m before deriving profile curvature.  This 

technique ignores subtle concavities or convexities to focus on major terrain features.  

Maggioni and Gruber (2003) also reduced the resolution of their DEM to 50 m relative to 

other terrain parameters (25 m) when calculating curvature.  I chose 10 m resolution after 
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visually previewing a range of resolutions and found that for the scale of my study areas, 

10 m profile curvature appears most suitable for identifying aprons and major rollovers. 

Incoming solar radiation affects air temperature, snow temperature, and 

temperature gradients above and in the snow, which all have a profound effect on snow 

strength, grain formation, and metamorphism (Birkeland, 1998; Lutz and Birkeland, 

2011; McClung and Schaerer, 2006; Slaughter et al., 2011).  The solar radiation tool in 

ArcMap is used to sum direct and diffuse insolation (it does not calculate reflected solar 

radiation, which can be a significant contributor for snow covered surfaces).  The 

calculation involves calculating an upward looking hemispherical viewshed based on 

topography, and overlaying the viewshed on a direct sunmap and a diffuse skymap 

(ESRI, 2009a).  For each couloir, I calculated total insolation from November 1
st
, which 

roughly corresponds to the date that snow accumulation began, until the date that the 

couloir was sampled.  Due to the complexity of such calculations and the number of 

unmeasured parameters involved (e.g., cloud cover and transmissivity), the solar 

radiation values, in watt hours per square meter (WH/m
2
), should be viewed as relative to 

each other rather than absolute.  I calculated cumulative totals as a way of determining 

average relative insolation values during the winter season prior to our sampling of each 

couloir. 

Wind plays a critical role in snowpack development, especially in alpine terrain 

(Sturm and Benson, 2004) and steep faces (Wirz et al., 2011), and most studies on spatial 

variability have cited wind as a contributing factor (e.g., Conway and Abrahamson, 

1984).  I created a number of wind-related parameters which are dependent on seasonal 
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prevailing wind direction.  Several weather stations record wind data near the study sites 

and are relatively unobstructed by terrain (Figs. 2 and 8). For each couloir, I selected the 

station that was closest or most representative with availability of wind data for that 

season.  In the Big Sky area, I used wind data from the Lone Mountain summit station for 

the Upper A to Z chutes and the Gullies.  I used the Jack Creek wind station for the 

Headwaters chutes, and I used the Great Falls wind station for the North Summit area and 

Lone Lake Cirque.  In the Tetons, I used the Rendezvous Mountain Summit wind station 

for all of the couloirs (Table 1).  For each couloir, I calculated the prevailing wind 

direction using hourly wind data from November 1
st
 until the date that the couloir was 

sampled.  The wind stations on Lone Mountain are operated by the ski areas, so they 

don‟t begin recording data until early to mid November.  I calculated the prevailing wind 

direction by averaging the easterly and northerly components weighted by the wind 

velocity as follows: 

                          
   

 
      

         
 
   

 
         

 
   

 

                 

Where    is the hourly wind velocity reading,    is the hourly wind direction in 

radians, and n is the total number of hourly readings from November 1
st
 until the 

sampling date.  Prevailing wind direction calculations were rounded to the nearest 5 

degrees.  Wind speed data was unreliable for the Lone Peak summit station, so I used the 

same calculations without weighting the hourly wind directions with wind speed for those 

data. Also note that the Great Falls wind station on Lone Mountain only collected data 

starting January 5, 2011.  The calculated prevailing winds are generally west to 
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southwest, with differences likely arising due to location relative to surrounding 

topography and seasonal trends (Table 1).  The reason for using prevailing wind direction 

for the following terrain parameters is because it can be approximated in unfamiliar 

terrain where wind data is unavailable from flagging on trees, cornices, or seasonal snow-

loading patterns. 

A wind exposure index is a likely parameter for modeling snowpack.  Schaerer 

(1977) found that an “Exposure to Wind” index was one of the most significant 

predictors of avalanches.  In the Big Sky area, terrain that is exposed to the prevailing 

winds is typically scoured or shallow and subsequently faceted.  However, we also 

observed that some areas that retain snow despite being exposed and battered by wind 

have stout, wind-packed grains without any weak layers.  Deeper snowpacks are found in 

wind sheltered areas.  Localized snow depth patterns are likely to be critically relevant to 

overall snow strength (Birkeland et al., 1995). To create a wind exposure index, I 

employed a similar GIS technique as Winstral et al. (2002).  They found a “maximum 

upwind slope” parameter was significant for modeling spatial snow distribution, albeit at 

a much broader scale.  Their parameter was determined using a 120
o
 pie-shaped area 

centered on the prevailing wind direction with search distances between 50 m and 2000 

m.  The slope between the steepest “sheltering” cell and the cell of interest was calculated 

as way to “quantify the extent of shelter or exposure provided by the terrain upwind of 

each pixel” (Winstral et al., 2002).  For my wind exposure index, I used a 10 m search 

radius to calculate the average elevation of all of the cells within a 120
o
 pie shaped area 

centered on the prevailing wind direction (Fig. 14).  The value of the parameter is the 
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difference between the cell of interest and the average elevation of these upwind cells, 

where values less than zero indicate a wind-sheltered cell.  I selected a 10 m search 

pattern after visually previewing the outputs for several lengths.  For the scale of this 

study and its terrain, a 10 m radius appeared to most effectively represent wind-loading 

and scouring patterns at a fine scale.  

 

 

Fig. 14.  Diagram of the technique used to calculate the wind exposure index.  The wind 

exposure index equals the target cell minus the average of the upwind cells within a 120
o
 

wedge with a 10 m radius. 

 

 I created another wind-related parameter called the viewshed index.  This 

parameter quantifies how visible a cell is from its major windward ridgeline and is a 

measure of coarse scale wind exposure.  As with the previous wind exposure index, the 

degree of exposure or sheltering strongly affects snowpack accumulation and 

metamorphism.  I used a 30
o
 pie-shaped search into the prevailing wind direction from 

the boundaries of the couloir and digitized a line along the nearest major ridgeline 
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contained within the pie-shaped search.  I then used the viewshed tool to count the 

frequency that each cell is visible from vertex points along the digitized ridge line (Fig. 

15).  A viewshed index of zero indicates a non-visible and highly sheltered location from 

prevailing winds.   

 

 

Fig. 15.  Map illustrating how the viewshed index was calculated for Jack Creek couloir.  

A 30
o
 pie-shaped search from the couloir to the major windward ridgeline is used to 

define the endpoints of the viewing platform. 

 

The exposure of the terrain also affects snowpack development.  The degree of 

exposure not only affects how the wind interacts with the snow, but is also a measure of 

the skyview for each cell.  Skyview affects the exchange of longwave and shortwave 

radiation, which in turn, affects temperature gradients and grain development such as 

surface hoar growth (Lutz and Birkeland, 2011; Shea and Jamieson, 2010).  I created a 
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fine-scale exposure index as a potential parameter by conducting a 4 m annulus-shaped 

search around the cell of interest and calculating the average elevation of these cells.  I 

subtracted this value from the elevation of the center cell; thus positive values are 

exposed cells (Fig. 16). This parameter is an indicator of whether, at a fine scale, the cell 

is on a protrusion or depression in the terrain, independent of wind direction.  The 

calculation of this parameter is similar to a “roughness” parameter used by Hoechstetter 

et al. (2008).   

 

 

Fig. 16.  Diagram of the technique used to determine the exposure index calculation.  

Exposure index equals the elevation of the target cell minus the average elevations of the 

surrounding cells within a 4 m radius.  

 

The last two parameters are distance from the edge of the couloir and distance 

from the windward edge.  The depth and structure of the snowpack significantly changes 

across the width of a couloir.  Arons et al. (1998) and Birkeland (1995) showed that depth 
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hoar preferentially grows over rock outcrops, where snow depth is locally shallower, and 

it could be hypothesized that similar metamorphism occurs near the sides of couloirs.  In 

alpine terrain, cross-loading winds are common, so distance from the windward edge is 

also a likely parameter.   To create these terrain parameters, I digitized the couloir 

boundaries and calculated the distance of each cell from the boundaries.  For the 

windward edge, I only digitized the windward boundary of the couloir based on field 

observations and prevailing wind calculations.  To accurately digitize the couloir 

boundaries, I referred to the “zero” points collected in the field supplemented by a shaded 

relief layer created from the DEM.  For the Teton area, I also used 15 cm orthorectified 

photographs for reference.   

Note that the presence and influence of trees is an important parameter on the 

influence of spatial variability (e.g., Shea and Jamieson, 2010).  All of the terrain 

sampled on Lone Mountain is above treeline and unaffected by trees.  In the Tetons, three 

of the four sample sites, with the exception of A-Chute, have sparse or dense tree cover 

along the sides of the couloirs. This certainly affects snowpack development.  

Unfortunately, only the bare-earth LiDAR data was available from the Teton region, and 

no tree-related parameters were derived.    

With the completion of the twelve terrain parameters, I spatially overlaid the 

mapped snow observations on each of the raster grids and prepared for statistical 

analysis.  To allow for slope-to-slope modeling and cross-validation, elevation, solar 

radiation, and view were normalized for each slope.  I am targeting the relative values 

rather than the absolute values of these parameters on each slope. 
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Exploratory Analysis 
 

Designing the Response Variable 
 

Designing a suitable response variable to be modeled by the terrain parameters 

presents a serious challenge. My objective is to create a model that predicts “weak 

zones,” or locations where one would be more likely to trigger an avalanche, find 

instability in a snow pit, or have success with explosive control work.   However, these 

trigger locations have to be modeled based on only crude snow profiles lacking stability 

test results.  Using a subset of the current data, Guy and Birkeland (2010) modeled the 

response of a continuous variable using the percentage of the snowpack composed of 

weak layers.  While this method is effective in identifying areas where faceting is most 

pronounced, it may be misleading for identifying trigger locations because such modeling 

targets areas where most or all of the snowpack is composed of weak layers while 

overlooking the importance of a mostly strong snowpack with a thin but dangerous weak 

layer.   In practice, the latter scenario is typically more threatening, whereas the former 

could be a shallow, completely faceted, and relatively more benign location.   Another 

continuous variable to model is simply weak layer thickness, such as the thickness of 

depth hoar (HDH).  However, does a thicker layer of depth hoar necessarily mean a more 

dangerous situation?  This presents a problem by highlighting locations where weak 

layers are thick, while again downplaying the importance of thin but extremely 

threatening weak layers.  In practice, thicker weak layers aren‟t necessarily more 

dangerous (McCammon and Schweizer, 2002).  For avalanches failing on depth hoar, the 

failure frequently occurs at the interface or in the top few centimeters of the layer, so 
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thicker layers of depth hoar aren‟t necessarily more threatening (Birkeland, pers. comm., 

2011). 

A solution to this dilemma is to model a binary response: the presence or absence 

of a Potential Trigger Location (PTL).   The criteria for a PTL were defined on a case-by-

case basis for each couloir based on the field observations and discussions with avalanche 

professionals.  For most of the couloirs sampled, depth hoar is one of the layers of 

concern (e.g., Fig. 17).  In these cases, the criteria for a PTL were defined as any location 

with the presence of the weak layer and an overlying slope normal slab thickness greater 

than 15 cm (Table 2). I required a minimum slab thickness because we frequently 

observed very shallow, faceted snow near the sides of the couloirs.  However, with no 

slab in these locations, triggering an avalanche would not be possible.  The minimum slab 

criterion filtered out these non-threatening locations from being identified as PTLs.  

I chose the minimum slab depth with careful consideration.  After discussions 

with several local avalanche experts and ski patrollers on Lone Mountain, I concluded 

that 15 cm was the most appropriate minimum slab depth for defining a PTL.  Schwiezer 

and Lütschg (2001) found the lower quartile of fracture depths from a sample of 522 

skier triggered avalanches was 30 cm (measured slope vertical).  From a sample of 93 

fatal avalanches in Canada, Jamieson and Johnston (1992) reported the lower quartile of 

slab thicknesses was 54 cm, and from 181 avalanche accidents from the Canadian Interior 

Ranges, the lower quartile was 30 cm (measured slope vertical).  When corrected to slope 

normal thicknesses on a 45
o
 slope, these are 38 cm and 21 cm slab thicknesses, 

respectively. Patrollers at Moonlight Basin are concerned with fractures propagating to  
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Fig. 17.  Snow profile from First Fork showing the depth hoar layer that we tracked and 

the overlying slab. 

 

full depth from around 15 cm or deeper (Carpenter, pers. comm., 2011).  A number of 

techniques in this analysis deal with the uncertainty of defining the minimum slab depth.  

 In the Upper A to Z chutes, we frequently observed weak faceted layers between 

crusts.  These were typically shallowly buried without a significant slab, but reactive in 

our stability tests (e.g., Fig. 18).  In this case, I defined PTLs as any location with the 

layer of facets found between two crusts.  In a few select couloirs, we observed near 

surface diurnal faceting or surface hoar formation at or near the surface of the snowpack.  

Because these layers had not been buried, I defined a PTL based simply on the weak 
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layer presence.  In these last three cases, for those locations to be true PTLs, a slab of 

new or windblown snow would need to be added to the slope.   

 

 

Fig. 18.  Snow profile from Upper AZ1 showing the reactive faceted layer between two 

crusts that we tracked, as well as a depth hoar layer. 

 

Lastly, I have two datasets where I collected ECT data on buried surface hoar 

layers (e.g., Fig. 19).  For these days, I defined a PTL for a given surface hoar layer as 

any test site location where the extended column fully propagated across the layer.  This 

is the suggested interpretation for the ECT (Simenhois and Birkeland, 2006).  On one of 

the ECT sampling days, a portion of the slope avalanched, and I traced the crown line 

with the GPS.  Points along the crown line are also classified as PTLs.  
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Fig. 19.  Snow profile from A-Chute showing two reactive surface hoar layers that we 

repeatedly tested with ECTs. 

 

Mapping PTLs 
 

I visually represented the spatial patterns of PTLs on maps to complement my 

statistical analyses.  In this section, I simply mapped the distribution of PTLs and non-

PTLs over the twelve terrain parameter grids as well as a shaded relief map.  The shaded 

relief maps for each couloir are included in Appendix A.  Maps of PTLs over selected 

terrain parameters are integrated throughout the document to emphasize important 

relationships, and supplementary three-dimensional maps are included in Appendix C to 

aid in visualization. 
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Correlation Analysis 
 

 All statistical analyses are performed using R Software (2009) and are carried out 

for each of the identified weak layers in each of the 21 couloirs, for a total of 32 datasets 

(Table 2). For preliminary exploratory data analysis, I tabulated correlation coefficients 

for the snow observations (HS, HSlab, and HDH) and the terrain parameters described in 

previous sections.  Testing the significance of linear correlations is a common practice in 

snow research when testing for the influence of terrain parameters (e.g., Birkeland, 2001; 

Gleason, 1996; Wirz et al., 2011).  Because not all of the terrain parameters are normally 

distributed, I calculated the non-parametric Spearman‟s rank-order correlation 

coefficients.  Significance of correlations are tested with the Student‟s t-test (Zar, 1972), 

and squaring the correlation coefficient gives the percentage of variance in the response 

that is explained by that variable in a linear regression.  I output the correlations in a 

colored heat map using the gplots package in R (Warnes, 2009), which rearranges the 

rows of the parameters to form general clusters of positive and negative correlations, 

allowing a more visual display of the results.   

Terrain Parameter distribution comparisons 
 

 Next, I compared the distribution of all the terrain parameters that are associated 

with the presence of a PTL against the distribution of all terrain parameters that are 

associated with the absence of a PTL.  If a terrain parameter is strongly associated with 

the development of a PTL, we would expect to see a different distribution of values for 

locations where PTLs were observed, relative to non-PTL locations.  The Kolmogorov-

Smirnov goodness-of-fit test (KS-test) is a non-parametric method for testing the null 
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hypothesis that the difference between two distributions arises due to pure chance 

(Massey, 1951).  A p-value less than 0.05 rejects the null hypothesis, indicating that the 

distributions are significantly different and that the terrain parameter in question is 

associated with the response of PTLs.  This test assumes the data fit a continuous 

distribution function without numerous repeated values.  All of the parameters meet this 

assumption, with the exception of rel.view, so I exclude rel.view from this section of 

analysis.  This method was employed by Slaughter et al. (2011), where the most 

influential parameters in facet-forming days vs. non-facet-forming days were determined 

using the KS-test.  Additionally, I plotted estimated probability distributions functions 

(PDFs) of terrain parameters for PTL and non-PTL locations to show how the 

distributions vary.  The KS-test identifies whether distributions are significantly different, 

but it does not identify where.  Qualitatively identifying where the distributions differ 

from the PDFs is not statistically supported.  

Modeling Potential Trigger Locations 
 
 

 The previous two tests have clear and simple results, but are limited in that they 

isolate the effects of each parameter.  Because the formation of PTLs is a complex 

process, modeling the influences of terrain parameters together is necessary for both 

prediction and interpretation.  Although the quest for a single, optimal model is 

frequently the objective of environmental research, mathematical models of 

environmental systems can‟t entirely capture the complexity of processes, parameters, 

and scales involved.  The concept of equifinality suggests that there are several 

acceptable model structures or many acceptable parameter sets with similar levels of 
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model performance (Beven and Freer, 2001).  I approached the complex problem of 

modeling PTLs from terrain parameters with two different model structures, each 

attempting to characterize the process using a different approach.  In the following 

sections, I describe the background and application of classification trees and logistic 

regression modeling.   

Classification Tree Modeling 

  

 Classification trees are an excellent tool for modeling binary responses with non-

parametric parameters, especially for data with unknown relationships.  One of the 

primary strengths of classification tree modeling, when compared to common linear 

approaches, is the ability to capture hierarchal and non-linear relationships.  

Classification trees are more effective in modeling thresholds and complex interactions 

between parameters.  Also, outliers and correlated parameters aren‟t problematic for 

modeling with classification trees (Breiman et al., 1993).  Furthermore, the simplicity of 

the modeling results and accuracy scores allow for understanding from a wide range of 

audiences, which is a key component of avalanche science.  Several studies have 

employed classification trees or regression trees to relate meteorological parameters with 

avalanche activity (Davis et al., 1999; Hendrikx et al., 2005) or to predict snow depth 

(Winstral et al., 2002).   

 In classification tree modeling, an algorithm conducts an exhaustive search of all 

possible threshold values within the parameter set and splits the data into increasingly 

homogenous nodes in order to minimize the predictive error of the model.  This process 

of recursive partitioning of the data continues to a given endpoint depending on the data 
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size; the result is a tree with nodes and branches (Breiman et al., 1993).  I implemented 

the initial classification tree modeling using the mvpart package in R (Therneau and 

Atkinson, 2010), and I used the complete set of twelve parameters described previously.  

The algorithm splits data at nodes using the Gini index, which is a measure of how 

diverse subsets become once a particular variable is used to split at a node.  The tree is 

initially overfit, but I used a cross-validation process to prune the tree branches to the 

optimal tree size that minimizes cross-validation error (Breiman et al., 1993).   

 A more robust method for improved prediction accuracy for classification tree 

modeling is a boot-strapping based technique called Random Forest (Breiman, 2001).  

This method, implemented through the randomForest package in R (Liaw and Wiener, 

2002) builds a diverse forest of classification trees by using a bootstrap sample of data 

and modeling from a random subset of variables at each split.  The data withheld during 

each bootstrap iteration, known as the “out-of-bag” (OOB) data, are used to calculate 

prediction error at each step.  The OOB estimated error rate, which depends on individual 

tree strength and correlations between trees, converges as the number of trees approaches 

500.  The estimated error rate from the OOB data is used to calculate the success rate of 

the model.  At the cost of interpretability, the trees are averaged to create an effective tool 

for prediction.  The randomness of the variable subsets makes the method more robust to 

noise in the data, and the large number of trees prevents overfitting.  While there is no 

“average tree” that can be plotted or easily reported, this technique allows for 

quantification of parameter importance.  For each tree, the OOB prediction error is 

calculated, and then the OOB prediction error is recalculated by withholding each of the 
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terrain parameters iteratively.  The differences between these two values for each 

parameter are averaged and normalized over the entire forest.  The resulting “mean 

decrease in accuracy” for each parameter gives a measure of how much the full forest‟s 

OOB estimated error rate would decrease without each term in the model.   

 For the relatively large sample of depth hoar PTLs and near-surface facet PTLs, I 

cross validated the Random Forest predictive model by applying it to each of the other 

couloirs.  This allows interpretation of how well the modeled effects in a given couloir 

can be extrapolated to other couloirs.  The results of a prediction model can be classified 

into a 2x2 confusion matrix (Table 5).  H denotes “hits”, where the presence of PTLs are 

correctly predicted.  F is the “false alarms”, where a PTL is predicted but not observed.  

M is the “false stable” group, where PTL predictions are missed.  Z is all of the correct 

predictions of strong snowpacks.   

Table 5.  Confusion matrix for a binary response. 
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For cross-validation, I calculated the success rate, which is simply the number of 

successful predictions over the sample size (Allouche et al., 2006): 

                 
   

       
         (2) 

 This statistic can be misleading, depending on the prevalence of the response.  For 

example, if you had a horribly inaccurate model that always predicted “no PTL”, and an 

observed dataset with 1 PTL and 99 non-PTLs, you would get a success rate of 99%, 

even though the model has no ability to separate PTLs and non-PTLs.  A measure of this 

ability is the True Skill Statistic (Allouche et al., 2006): 

    
 

   
  

 

   
                     (3) 

The first fraction measures the probability of detection, or the “hit rate”, and the second 

fraction measures the probability of false detection, or the “false alarm rate”.  True skill 

statistics range from +1 to -1, where a score of +1 means the model perfectly 

discriminates all PTLs and non-PTLs,  a score of 0 means the model has no ability to 

discriminate, and -1 means the model perfectly discriminates all of the observations 

incorrectly.   

 As described previously, the minimum slab thickness criterion, though carefully 

selected, is subject to uncertainty.  I investigated the robustness of parameter importance 

findings with a Monte Carlo approach.  I iteratively redefined the minimum slab 

thickness for PTLs, in 1 cm increments from 1 cm to 60 cm and refit the Random Forest 

model for each unique slab thickness.  At each iteration, I plotted how the mean decrease 

in accuracy (i.e., importance) for each parameter changed across the range of minimum 

slab thicknesses. I also calculated the averaged mean decrease in accuracy over all slab 
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thicknesses, which shows how important the parameter is over the entire range of slab 

thicknesses.  Because a number of couloirs have a shallower snowpack with thinner 

slabs, I adjusted the range of slab thicknesses to 40 cm or 50 cm for these couloirs.  

Logistic Regression Modeling 
 

Logistic regression is widely accepted as the most appropriate tool for binary data 

because of its flexibility, ease of modeling, and meaningful interpretations derived from 

the model coefficients (Hosmer and Lemeshow, 2000).  Schweizer and Kronholm (2007) 

used logistic regression to model the presence/absence of surface hoar.  Logistic 

regression uses a generalized linear model in which the PTLs can be related to the terrain 

parameters through a linear regression of the form: 

                                
 

   
                  (4) 

where β1 is the coefficient of the terrain parameter    , and          specifies the link 

function for the probability of a PTL,  .  Because the logit is the log odds function, 

exponentiating the logit yields the odds.  The odds that PTL=1 is                    

(Hosmer and Lemeshow, 2000).  The odds are the probability that an event will occur, 

divided by probability that it won‟t.  For a probability of 0.8, the odds=4, which is 

commonly phrased as “four to one odds.”   

Logistic regression is essentially a linear regression on the probability of a PTL, 

and thus, it shares many of the same benefits of multiple linear regression but without the 

burden of many of the assumptions.  Analysis of logistic regression is guided by the same 

principles used in linear regression, except that it is based on the binomial distribution 

rather than the normal distribution, and the method of maximum likelihood is used to fit a 
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logistic regression model  (Hosmer and Lemeshow, 2000).  An advantage of logistic 

regression is that no assumptions are made about the distributions of the explanatory 

variables, which can often be problematic for ordered or non-normal data frequently used 

in snow science (e.g., Birkeland, 2001). Observations assume independence, and an 

absence of multicollinearity among parameters is necessary for accurate estimations 

(Hosmer and Lemeshow, 2000).   

Logistic model selection techniques are guided by methods described in Hosmer 

and Lemeshow (2000) and Dalgaard (2008).  I fit a full model with all of the terrain 

parameters.  I also included the following quadratic forms: rel.elev
2
, slope

2
, prof

2
, wind

2
, 

edge
2
, and wind.edge

2
. I exclusively chose to include these for several reasons.  First, I 

considered the effect that I am attempting to model with each term and how that effect 

may have been exhibited in the snowpack.  I hypothesize the selected terms may have 

quadratic effects on the presence of PTLs, but including the quadratic forms of all of the 

terrain parameters could have resulted in overfitting or finding a significant but 

meaningless relationship during model selection.  For example, the probability of finding 

a PTL may be high at mid-elevations but low at high elevations and low elevations where 

ridgetop winds or avalanche debris strengthen the snowpack, respectively.  Another 

example is distance from windward edge, where faceting may be prevalent near the edge, 

nonexistent in the middle, and prevalent again further from the middle, which is modeled 

by a quadratic form.   Furthermore, previous research found the quadratic forms of slope 

and wind index to be significant parameters of snow depth, while the linear counterpart 

of slope was not (Erickson et al., 2005).       
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 Using the terrain parameters and the quadratic terms described above, I reduced 

the full model to a list of reduced models by using an automated model selection 

technique that finds the “best” models from a semi-exhaustive search of all possible 

models.  With just the main effects considered, there are over 40,000 candidate models.  

Glmulti is a powerful tool that uses a genetic algorithm to explore a random subset of all 

possible models, but with a bias towards better models defined by an information 

criterion (Calcagno and de Mazancourt, 2010).   Repeated simulations have shown that 

the genetic algorithm effectively converges on the best models when compared to an 

exhaustive search (Calcagno and de Mazancourt, 2010). In my analysis, I found models 

that minimize the corrected Akaike‟s Information Criterion (AICc), which is a widely 

used statistical tool for comparing models and is preferred over the Akaike‟s Information 

Criterion (AIC) for smaller sample sizes (Burnham and Anderson, 2002).  AICc is 

calculated as follows: 

                     
       

     
    (5)                                                                        

where k is the number of parameters, L is the maximized value of the likelihood function, 

and n is the sample size. 

Automated stepwise methods are commonly used for model parameterization by 

sequentially subtracting or adding previously removed parameters until a best fit is 

reached.  Stepwise reduction is based on significance testing (e.g., Birkeland, 2001) or a 

criterion such as AIC (e.g., Guy and Birkeland, 2010).  Though extremely popular in 

model building,  stepwise procedures are frequently criticized for having “no theoretical 

basis” (Davison, 2003). These stepwise methods attempt to choose an optimal model, but 
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depending on starting points and stopping rules, forward and backwards approaches 

rarely converge (Fig. 20). 

 

 

Fig. 20.  Diagram showing how stepwise models rarely converge on the model with the 

lowest AIC, indicated by the grey circle (Calcagno and de Mazancourt, 2010). 

 

 The glmulti approach, implemented with the glmulti package in R (Calcagno, 

2011) compares all candidate models and ranks them based on their AICc value.  One 

advantage of glmulti over stepwise selection is that it ensures the best model according to 

AICc is selected.  AICc is a measure of goodness of fit, but it penalizes each additional 

term added to a model in order to minimize overfitting and multicollinearity between 

terms.  The key advantage of glmulti is that, by ranking the models with the lowest AICc, 

it allows multi-model inferences.   With a relatively small number of carefully chosen 

parameters and a robust automated selection technique, my model selection technique is 

not a „fishing expedition.‟  Furthermore, Hosmer and Lemeshow (2000) suggest that 
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automated techniques are effective when “the outcome being studied is relatively new 

and the important covariates may not be known and associations with the outcome not 

well understood.”  

I intentionally excluded interactions from the logistic regression model for several 

reasons: (1) There are 18 main effects fit to the full model with quadratic terms included, 

and the number of possible pairwise interactions exceeds 150.  Including all of these 

terms in the full model increases the chances of finding significant but meaningless 

parameters using automated model selection.  (2) The number of potential models 

explodes exponentially if interactions are included and is beyond the computing power of 

the glmulti package.  (3) The classification trees are superior at modeling interactions and 

will capture important relationships.  (4) My primary objective is a cognitive 

understanding of the interactions between terrain parameters and snowpack weaknesses, 

not a predictive model.  Including numerous interactions will yield undesirable 

complexity and challenging interpretations. (5) Given the amount of uncertainty with this 

study, including more complex interactions compounds error and produces more 

uncertainty. 

Following the glmulti model reduction, I defined the number of models to be 

averaged in the final model by previewing a plot of the top thirty models with the lowest 

AICc values.  A general rule of thumb is that all models that fall within two values of the 

minimum AICc should be considered for multi-model inferences (Burnham and 

Anderson, 2002).  I selected all of the models that fell below this threshold and weighted 

them according to their AICc values with a relative evidence weight of          .  A 
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Student-based method proposed by Burnham and Anderson (2002) calculated 

coefficients and their 95% confidence levels.   Confidence intervals that include zero are 

generally not highly significant, but are still important if selected by AICc.  Note that 

significance testing of parameters is invalid for models chosen with an information 

criterion, but rather, confidence intervals should be examined (Greenwood, pers. comm., 

2011).   I also calculated the odds ratios for each of the parameters in the model and their 

95% confidence limits.   The odds ratios are simply the exponential of the coefficient of a 

given parameter, but they provide a logical interpretation for the coefficients.  If the 

parameter increases by one unit, the odds ratio is the multiplicative effect on the 

probability of a PTL occurring, given all other parameters are held constant.  For 

example, when all other parameters are constant, an odds ratio of 1.04 for slope can be 

interpreted as: “A one degree increase in slope will be 1.04 times more likely to be a 

PTL” (Ramsey and Schafer, 1997).   

I also calculated a measure of parameter importance for the averaged logistic 

models.  This is the sum of relative evidence weights for each of the top models that the 

parameter appears in.  Note that this measure of importance is interpreted differently than 

importance of terms in the classification trees.  In classification trees, the loss of 

predictive power was calculated with the term removed from the model, whereas the 

logistic model importance is a measure of how frequently each term appears in the best 

models, weighted by how good each model fits.  In logistic regression, the importance of 

a parameter highly depends on what other parameters are in the model. In an AICc 

reduced model, a parameter with strong predictive power may not show up as important 
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if a highly correlated term is a better parameter.  For example, wind.edge and edge are 

expected to model similar behavior, and though they both may have strong associations 

with PTLs, it is unlikely that both parameters will be fit into the lowest AICc models.  

The parameter with the strongest relationship will have a high importance, while the 

other will show little or no importance.  This is consistent with the assumption of absence 

of multicollinearity for logistic models.   

A number of diagnostic tests have been developed to assess goodness of fit for 

logistic models, described in Hosmer et al. (1997) and Hosmer and Lemeshow (2000).  

However, most of these tests apply to single model structures.  Many of these tests are 

not entirely robust, and the process of reducing a full model is the best check on overall 

fit, especially considering the robust reduction technique (Ramsey and Schafer, 1997).  

Note that I did implement several of these tests (the Pearson chi-square/unweighted sum-

of-squares test, drop-in-deviance chi-square test, and the area under the ROC curve) 

using the single “best” models from approximately one quarter of the modeled couloirs 

and found that the lowest AICc models are statistically significant and generally fit the 

data well.  The details and results of these tests are superfluous because model averaging 

is more robust and better than relying on a single model form (Burnham and Anderson, 

2002).  Checking for outliers is unnecessary because only two distinct values for the 

response are possible (Ramsey and Schafer, 1997).   

A coarse method for assessing the overall fit and predictive ability of the final 

logistic model is a 2x2 confusion matrix to compare the percentage of predicted outputs 

that match the observations (Table 5).  Because the predicted values for the logistic 
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regression model are a range of probabilities from 0 to 1, it is necessary to define a cutoff 

point, c. The value of the cutoff point can be changed to optimize the discrimination 

power of the model, but for simplicity I used the most intuitive value of c= 0.5 for all of 

the individual couloirs.  I transformed the predicted probabilities from the averaged final 

model into binary data by rounding all values greater than 0.5 up to 1 and all values less 

than 0.5 down to 0 and calculated the success rate (Equation 2).  Unfortunately, this 

approach can give misleading results because it depends heavily on the distribution of the 

probabilities in the sample (Hosmer and Lemeshow, 2000).  For example, if the 

weatherman predicts a 95% chance of rain, and it rains, he is classified as right.  If the 

weatherman predicts a 55% chance of rain, and it rains, he is also classified as right.  

Clearly, the first weather model is a better predictor.  Therefore, I also calculated the 

mean absolute error, which is the absolute difference between the predicted probabilities 

and the true observations averaged over the entire couloir.  In the weatherman example, 

the first model would have an absolute error of 0.05 while the second model would be 

0.45.  Thus, smaller mean absolute error values indicate the logistic regression model 

performs better.   For each couloir, I also calculated the true skill statistic of the logistic 

regression model like I did with the classification tree models (Equation 3). 

The structure of the data needs to be considered for logistic regression to meet the 

assumption of independence.   This logistic regression assumes a binomial distribution, 

with mean     and variance         .  If the parameters are clustered, that is, if we 

observe numerous repeated values for the terrain parameters, then the response may not 

fit a binomial distribution (Ramsey and Schafer, 1997).  This results in the variance of the 
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observed response being greater than expected, termed overdispersion.  Overdispersion 

causes confidence intervals to be underestimated, but can be accounted for with an 

inflation factor or dispersion parameter:  

        
   

   
                   (6) 

where the sum of squared Pearson residuals is divided by the degrees of freedom 

(Ramsey and Schafer, 1997).  For each single couloir, overdispersion is not an issue 

because we have mostly unique response values.  The sample sizes are relatively small 

and most of the sampling points are spaced wider than the highly variable one meter 

DEM grids.  Thus, the data are unique and continuous with the exception of the view 

parameter, which should have minimal overdispersion on the entire model. 

When fitting a multi-couloir model, as described in the following section, 

overdispersion may be problematic.  When overdispersion was suspect, I modeled the 

logistic regression using a quasibinomial distribution.  I fit a full model as before, but 

rather than reduce the model using AICc, I reduced it using the quasi-AICc (QAICc).  

The QAICc adjusts for the dispersion parameter (  ), as follows: 

              
      

  
  

       

     
         (7)                                                                                       

 

The remainder of the analysis is the same as for non-dispersed data, except that I adjusted 

the confidence intervals for the increased variance.   

As with the classification tree modeling, I explored the uncertainty in the 

minimum slab criterion for a PTL for the logistic regression modeling.  I refit an 
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averaged final model and calculated parameter importance at different intervals of 

minimum slab thickness.  Because of the extensive computation time needed to reduce 

and fit a final model, I refit at only two other intervals.  For couloirs where deeper slabs 

were found, I redefined the minimum slab criterion at 30 cm and 45 cm, and for 

shallower snowpacks, I refit for slabs at 5 cm and 25 cm.   

Finally, I used the averaged AICc (or QAICc) reduced models for the fixed 

definition of PTLs for cross validation as I did with the classification trees.  I calculated 

two measures to compare the predictive power of the model: the success rate using a 2x2 

confusion matrix (Equation 2), and the mean absolute error.  As described earlier, the 

success rate is a crude estimate because it doesn‟t account for the distributions of 

predicted probabilities and it depends on the prevalence of the response.  Mean absolute 

error quantifies the difference between each observation and the predicted probability at 

the same location and it is a better measure for reporting relative logistic model 

performance across couloirs. 

Groupwise Modeling 
 

 I repeated the classification tree and logistic regression modeling processes 

described above for several groups of couloirs identified as having similarities while 

taking into consideration the effects of overdispersion.  I designed four groups based on 

weak layer type: depth hoar, surface hoar, diurnal facets, and facets on crusts (Table 2).  I 

reduced these groups further into geographic groups based on proximity in space and date 

of sampling (Table 1).  These geographic groups incorporate two different scales of 

analysis: mountain and cirque scales (Fig. 21).  Each of the cirque groups contains all of 
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the couloirs that share the same headwall, cirque, or alpine basin.  We sampled the 

couloirs in each of these cirques during roughly the same time period to minimize 

temporal variability.  The mountain scale analysis includes all of the couloirs on Lone 

Mountain collected over two winter seasons from nearly all aspects and five different 

headwalls or cirques on the mountain.   

  

 

Fig. 21.  An illustration of the three different geographic scales used for modeling PTLs: 

couloir (or slope) scale, cirque (or headwall) scale, and mountain scale. 
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 To better assess the fit of the logistic model for the group modeling, I found an 

optimal cutoff value for calculating the success rate.  Because these sample sizes are 

considerably larger, more predicted probabilities fall near 0.5, so it becomes increasingly 

important to define a cutoff value that optimizes the model‟s ability to discriminate 

between PTLs and non-PTLs in the “grey” area around 0.5.  To estimate the optimal 

cutoff value, I extracted the lowest AICc model from the glmulti reduction and fit it to a 

Receiver Operating Characteristic (ROC) curve using the Epi package in R (Carstensen et 

al., 2010).  The ROC curve plots the “hit rate” versus the “miss rate” for different cutoff 

values and estimates the value that optimizes the skill of the model for binary prediction.  

For example, a logistic model might return a long list of predicted probabilities in a grey 

area ranging between 0.4 and 0.5.  Rather than selecting all values above a cutoff value of 

0.5 as PTLs, the model may have a better ability at discriminating if it selects all values 

above 0.46 as PTLs.  I reported the true skill statistics and the associated success rates 

with the optimal cutoff value for these larger datasets.  
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4.  RESULTS AND DISCUSSION 
 

Case Study: Upper AZ1 Depth Hoar Layer 
 
 

 This section provides a detailed, step-by-step illustration of the previously 

described statistical methods using the depth hoar layer in Upper AZ1 couloir. I 

demonstrate how the analysis was conducted and how the various outputs can be 

interpreted.  The details of the intermediate analysis steps are omitted for the remainder 

of the couloirs, but the important figures are included in Appendix B and summarized in 

tables within the body of this document. Important findings from the results are 

summarized and discussed in the following sections. 

 A moderately developed, fist-hard layer of depth hoar pervaded most of the upper 

section of Upper AZ1 and was overlain with various crusts, mixed and faceted forms, and 

new snow (e.g., Fig. 15).  In the lower sections of the couloir and near the sides of the 

upper part, the hollow depth hoar layer transitions to a pencil-hard crust.  Though still 

composed of cupped grains, it is well sintered and considered non-threatening.  Potential 

Trigger Locations (PTLs) for the depth hoar layer in Upper AZ1 are defined as any 

location with the presence of the weak, hollow depth hoar layer and an overlying slab of 

at least 15 cm (Table 2).    

 I mapped the spatial distribution of PTLs over grids of the terrain parameters for 

previewing (Fig. 22).  Some relationships between PTLs and terrain, such as a strong 

relationship with the exposure of terrain and elevation, are immediately apparent.  Snow 

depths for Upper AZ1 average 50 to 60 cm, and most of the overlying slabs range 

between 20 and 30 cm (Fig. 23).  Upper AZ1‟s terrain parameters are continuous but not 
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normally distributed; thus the non-parametric modeling techniques of classification trees 

and logistic regression are ideal for modeling this data (Fig. 23). 

 

 

Fig. 22.  Spatial distribution of PTLs and non-PTLs for Upper AZ1 over the grid of 

terrain exposure.  A strong association between PTLs and low exposure is apparent, as 

well as an obvious trend of more PTLs at higher elevations, which are at the top of the 

figure. 
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Fig. 23.  Histograms of terrain parameters and snow observations for Upper AZ1, 

showing a shallow snowpack and high density of fairly shallow slabs.  Terrain parameters 

are shown in brown and snowpack parameters are shown in blue. 

 

 With a sample size of 70, Spearman‟s rank-order correlation coefficients are 

significant for values greater than 0.235 from a two-tailed distribution at the  =0.05 level 

(Zar, 1972).  A number of terrain parameters are significantly correlated with HS, HSlab, 

and HDH (Fig. 24).  The linear and quadratic forms of edge, slope, and elev have 

particularly strong correlations, as do the linear affects of plan and expo. 
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Fig. 24.  Heat map of Spearman‟s rank-order correlation coefficients for snow depth 

(HS), slab thickness (HSlab), and depth hoar thickness (HDH).  Correlations greater than 

0.235 or less than -0.235 are significant (shown in lighter color values). 

 

  With the exception of edge, all of the parameters reject the null hypothesis 

of the KS-test that the PTL and non-PTL samples are from the same distribution (Table 

7). In other words, the distribution of these terrain parameter values at PTLs differ 

significantly from non-PTLs, and this suggests that, when considered independently, each 

of these terrain parameters has the potential to help discriminate between PTLs and non-
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PTLs.  A comparison of the estimated probability distribution functions (PDFs) shows 

general patterns of how differences between the presence or absence of PTLs are 

conveyed in the terrain.  For example, PTLs appear to have a higher density at higher 

elevations and less exposed terrain (Fig. 25), suggesting that for this couloir we are more 

likely to find a PTL in those areas.  Furthermore, this suggests that a snow pit dug at 

lower elevations or more exposed terrain is likely to give misleading results about 

instabilities higher on the slope or in more sheltered terrain.   These plots are consistent 

with the results of the KS-test (Table 6) and the patterns identified from the map (Fig. 

22). 

Table 6.  Results from the KS-test on whether the terrain parameters come from the same 

distributions for PTL and non-PTL occurrences.  The parameters that reject the KS-test 

have the potential to independently discriminate between PTLs and non PTLs.   

 Parameter P-Value H0 result 

elev 0.0002 reject 

slope 0.0412 reject 

EW.aspect 0.0172 reject 

NS.aspect 0.0172 reject 

prof 0.0075 reject 

plan 0.0090 reject 

solar 0.0048 reject 

wind 0.0002 reject 

expo 0.0001 reject 

edge 0.5543 fail to reject 

wind.edge 0.0028 reject 
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Fig. 25.  The distributions of elev  and expo (b) for PTL and non-PTL observations.  For 

Upper AZ1, PTLs are associated with higher elevations and less exposed terrain than 

non-PTLs. 

 

  To explore hierarchal relationships between PTLs and terrain parameters, I fit a 

full model of all twelve parameters in the classification tree model of the form: 

 PTL~edge + prof + expo + rel.view + slope + rel.elev + rel.solar + plan +  

    wind.edge + wind + EW.aspect + NS.aspect   (8) 

 

Cross validation error of the overfit tree is minimized at a complexity parameter of 0.13, 

corresponding to a pruned tree size with three nodes (Fig. 26). 

 The pruned tree recursively partitions 29 non-PTL locations with threshold values 

for rel.elev, plan, and edge.  The final model correctly classifies all but five of the 

observations (Fig. 27).  Note that independently, edge is not found to have differing 

distributions for PTL or non PTL locations, but its interactions with rel.elev and plan lead 

to its inclusion in the tree model.  The interaction is as follows:  at relatively higher 

a b 
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Fig. 26.  Cross-validation results for tree pruning.  The yellow dot indicates the 

complexity parameter that minimizes cross-validation error.  The classification tree was 

pruned back to this complexity. The upper blue line shows relative cross validation error 

and the lower green line shows relative error.   

 

locations in the couloir (rel.elev >= 0.36), where the plan curvature of the slope is 

relatively more concave (plan < 3.6), PTLs are unlikely within 0.65 m of the edge of the 

couloir (edge >= 0.65).  This relationship makes sense.  In the upper part of the couloir 

(high rel.elev) there is an absence of PTLs near the fall-line ridges (high plan) where 

wind prevented significant snow or slab accumulation and subsequent melting from 

exposed rocks strengthened the surrounding snowpack.  Other locations near the sides of 

the couloir that are not near the fall-line ridges are also typically too shallow for 

significant slabs, thus the inclusion of edge. This example highlights the importance of 
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considering the how terrain parameters interact in full models rather than just their 

independent influences (as identified with the KS-test). 

 

 

Fig. 27.  The pruned classification tree for Upper AZ1 (with 3 nodes) showing that most 

of the discriminating power for PTLs comes from relative elevation in the first node. 

 

  Using the same structure and fitting principals as the classification tree, 

the Random Forest boot-strapping technique creates a more robust predictive model for 

comparison with other couloirs by averaging the most important trends in the data 

(Breiman, 2001).  The pruned tree described above is likely the “best” classification tree 

for the data but, by repeatedly withholding “out-of-bag” (OOB) samples of data, refitting 

the model, and cross-validating the accuracy using these OOB samples to hone in on a 

group of “good” trees, I create a classification model that does not rely on intricate 
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relationships that may be spurious or too specific for comparing to other couloirs.  The 

parameter importance from this robust Random Forest model, quantified by the mean 

decrease in accuracy, is plotted for two scenarios: Fixed PTLs and Uncertain PTLs.  For 

Fixed PTLs I maintain the minimum slab criterion for a PTL at 15 cm and plot the 

parameter importance from the Random Forest model.   For the Uncertain PTLs I 

iteratively refit the Random Forest model with increasing minimum slab criteria from 1 

cm to 40 cm and average the importance values at each step.   

 Rel.elev has the most predictive power for both Fixed PTL and Uncertain PTL 

scenarios (Fig. 28).  This suggests that, regardless of the uncertainty in defining the 

minimum slab required for a PTL, rel.elev is still a strong parameter.  Again, this agrees 

with our observations because in the lower portion of the couloir, we found no depth 

hoar, but at the higher elevations, depth hoar was fairly widespread, so regardless of the 

minimum slab criteria for PTLs, the lower elevations are still considered non-PTLs 

without the presence of a weak layer.  The Random Forest model for the Fixed PTL has 

an OOB estimated success rate of 80% for this data.  The mean decrease in accuracy for 

rel.elev is 0.08, suggesting that in the absence of rel.elev, the model is only capable of a 

72% success rate.  None of the other parameters are particularly robust to changes in PTL 

slab criteria, but plan, expo, and rel.view are noticeably more important for the fixed 

definition of PTLs.  The model shows good discrimination ability for PTL and non-PTLs 

with a true skills score of 0.59 (Table 7). 
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Fig. 28.  Terrain parameter importance for the Random Forest model for Upper AZ1.  

Fixed PTL points show the importance when the minimum slab criterion is 15 cm.  

Uncertain PTL points show the importance when the minimum slab criterion varies from 

1 cm to 40 cm. 

 I also fit a smoothed regression line to a plot of the mean decrease in accuracy 

values for selected strong parameters versus the minimum slab criteria for a PTL (Fig. 

29).  In the absence of any slab, rel.elev is the only strong parameter, with a small effect 

from rel.view. This implies that rel.elev is strongly associated with depth hoar presence, 

while the other parameters are more closely associated with slab thickness.   Note that all 

of the parameters converge on zero near a 30 cm slab.  This is a by-product of the data 

and boot-strapping technique, rather than a meaningful relationship, which consistently 
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appears in many of the individual couloir datasets.  Because there are only several 

locations observed with slabs thicker than 30 cm (Fig. 23), it is difficult to model their 

presence.  The boot-strapping technique makes it nearly impossible to find a parameter 

that consistently predicts the location of those few points.   

Table 7.  Confusion matrix for the prediction of Upper AZ1 observations using the 

Random Forest model. 

 

 

  

 

 

 

 

 

In order to test how effective the specific PTL/terrain relationships are for this couloir 

when used to predict PTLs for other couloirs, I cross-validated this Random Forest model 

to the entire dataset of twenty other couloirs.  I applied the same nodes and branches from 

the averaged classification trees to the terrain values associated with the other couloirs, 

and compared the predicted results versus the results that we observed from the field.  I 

averaged the mean success rates and true skill statistics for the entire dataset of all weak 

layer types, for each unique weak layer type, for each group that contains depth hoar as a 

weak layer, and for each winter season (Fig. 30).  The predictive success rate for the 
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Fig. 29.  Smoothed regression lines for the importance of selected parameters plotted 

against changing minimum slab criteria. 

 

entire dataset is 51%, which is essentially the same as flipping a coin.  In other words, the 

specific hierarchal relationships defining the presence/absence of PTLs in this one couloir 

only correctly predicted 51% of all of our snowpack observations through the course of 

two seasons.  There is little improvement in the predictive ability for groups that might be 

expected to have similarities, such as the other Upper A to Z chutes, other depth hoar 

layers, or other samples collected during the same season.   The cross-validated true skill 

statistics show the same pattern of poor model discrimination ability.  These results imply 

that the relationships between PTLs and terrain identified by the Random Forest model 

are specific to Upper AZ1; thus, predicting locations of PTLs in other couloirs based on 

these specific relationships would be unsuccessful.  



85 
 

 

 

 

Fig. 30.  Success rate (a) and true skill score (b) cross-validation results for Upper AZ1 

Random Forest model against different weak layer types, different groups with depth 

hoar, and different winter seasons. 

a 

b 
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 Random Forest classification model predictions utilize specific hierarchal and 

threshold relationships within the data.  To explore the possibility of highlighting 

different linear relationships, and to test their predictive success when cross-validated 

against other couloirs, I apply an entirely different model structure to the same data from 

Upper AZ1.   I fit a logistic model of all of the linear main effects and the pre-selected 

quadratic terms, with the form: 

 PTL  ~ edge + edge
2
 + prof + prof

2
 + expo + rel.view + slope +  

  slope
2
 + rel.elev + rel.elev

2
 + rel.solar + plan + wind.edge +  

  wind.edge
2
 + wind + wind

2 
                                                                      (9) 

 

The glmulti genetic algorithm finds the top 30 models with the lowest AICc (Calcagno 

and de Mazancourt, 2010).  I select all of the models that fall within the threshold of two 

AICc values of the minimum AICc model as the final logistic model (Fig. 31). 

 

 

Fig. 31.  Profile of AICc values for the top 30 models in the glmulti reduction of the full 

logistic regression model for Upper AZ1.  The red line indicates the threshold value at 

which all models below it are selected for the final logistic model. 
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Table 8.  All of the models averaged for the final logistic model of Upper AZ1. 

 

 In this case, ten models are selected and weighted according to their AICc (Table 8).  

Again, rel.elev, and additionally, rel. elev
2 

are in every model and have the highest 

parameter importance, along with expo (Fig. 32).  Because expo and plan are highly 

correlated parameters, it is not surprising to see only one of them in the most important 

terms, unlike in the Random Forest model.  Here it seems that a linear relationship with 

expo better describes the ridge scouring than plan without correlating with other terms.  

The logistic model shows an improved success rate over the Random Forest model, 

predicting 87% of the observations correctly based on the terrain. 

AICc Lowest AICc Model 

54.87  PTL ~ 1 + expo + rel.elev + rel.elev
2
 

55.25  PTL ~ 1 + expo + rel.elev + rel.elev
2
+ wind.edge 

55.54  PTL ~ 1 + expo + rel.view + rel.elev + rel.elev
2
 

55.81  PTL ~ 1 + edge + expo + rel.elev + rel.elev
2
+ wind.edge 

55.89  PTL ~ 1 + prof + expo + rel.elev + rel.elev
2
 

56.20  PTL ~ 1 + edge + expo + rel.elev + rel.elev
2
 

56.63  PTL ~ 1 + edge
2
+ expo + rel.elev + rel.elev

2
+ wind.edge 

56.64  PTL ~ 1 + expo + rel.elev + rel.elev
2
+ rel.solar + wind.edge 

56.68  PTL ~ 1 + edge
2
+ expo + rel.elev + rel.elev

2
 

56.77  PTL ~ 1 + expo + rel.elev + rel.elev
2
+ rel.solar 
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Fig. 32.  Importance of parameters in the logistic regression of Upper AZ1 for a 

minimum slab criterion of 15 cm. 

 

Parameter importance varies for changes in slab criteria for PTLs (Fig. 33).  Again, 

rel.elev and expo both appear important for changing minimum slab criteria, suggesting 

that these are robust predictors of PTLs for Upper AZ1.   
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Fig. 33.  Importance of parameters in the logistic regression of Upper AZ1 for a 

minimum slab criterion of 5 cm (a) and 25 cm (b). 

a 

b 
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 A computational problem arises in logistic regression if a model is too “perfect” 

in that it is able to correctly separate all of the successes and failures.  This leads to 

probabilities of 100% or 0%, and yields very large estimates because the model attempts 

to transition rapidly at the threshold point, rather than linearly (Greenwood, pers. comm., 

2011).  These terms are highly important, even though they have large standard errors 

and massive confidence intervals.  However, their coefficients, log-odds ratios, and 

confidence intervals are difficult to interpret.  Upper AZ1 is one of the few couloirs in 

this study with the problem of perfect separation (Table 9).  Rel.elev, rel.elev
2
, expo, and 

the intercept combine to create one of several models with perfect separation, which is 

readily apparent because of their large confidence intervals.  These terms are highly 

important in the model, and the signs of their coefficients are still meaningful for 

interpretation.  The negative coefficient of expo implies that for increasing exposure 

values, the probability of a PTL decreases (has a negative linear relationship) when all 

other parameters are held constant.  The inclusion of rel.elev and rel.elev
2
 in the same 

model may seem unusual, but they combine to explain a non-linear probability of PTLs.  

The positive coefficient for rel.elev and negative coefficient for rel.elev
2
 implies that at 

lower elevations (small rel.elev values) the probability of a PTL increases.  However, 

with increasing rel.elev, the negative coefficient on rel.elev
2
 gains power, and thus, the 

probability of PTLs at higher elevations decreases again.  This highlights a relative 

clustering of PTLs in the middle of the couloir, which is evident from the PDF of rel.elev 

(Fig. 25a) and the map of PTLs (Fig. 22).  This example demonstrates how both 
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modeling techniques are capable of explaining the strong relationship between rel.elev 

and PTLs despite differences in model structure. 

 The other estimates included in the final averaged model have standard 

interpretations from their odds ratios.  For example, edge has an odds ratio of 1.10, 

meaning that if all other terms are held constant, moving one meter further from the edge 

of the couloir yields a 10% increase in the probability of finding a PTL (Table 10).  This 

agrees with our observations: as we sampled closer to the edge of the couloir, we were 

more likely to find an insignificant slab above the depth hoar or no depth hoar at all.  

  

 Table 9.  Coefficients, odds ratios, 95% confidence limits, and importance values for the 

averaged final logistic model of Upper AZ1.  Parameters that are considered highly 

significant, based on their exclusion of zero in their confidence interval, are highlighted 

in green. 

  

  

 The cross-validation results from the logistic regression model show equally poor 

predictive power as the Random Forest model, with success rates hovering around 50% 

and mean absolute error around 0.5 (Fig. 34).  This reinforces the conclusion that this 

  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL Odds 

Ratio 

Lower 

CL Odds 

Ratio Importance 

Intercept -9.931 -17.793 -2.070 5.00E-05 1.26E-01 0 1 

expo -9.193 -15.710 -2.676 1.00E-04 6.88E-02 0 1 

rel.elev 34.218 9.790 58.649 7.26E+14 2.96E+25 17817.93 1 

rel.elev^2 -26.336 -45.512 -7.160 0.00E+00 8.00E-04 0 1 

wind.edge -0.092 -0.368 0.184 9.12E-01 1.20E+00 0.6922 0.386 

edge 0.092 -0.270 0.454 1.10E+00 1.57E+00 0.7637 0.193 

edge^2 0.007 -0.024 0.038 1.01E+00 1.04E+00 0.9759 0.139 

rel.solar -0.201 -1.148 0.746 8.18E-01 2.11E+00 0.3173 0.136 

rel.view -0.280 -1.422 0.863 7.56E-01 2.37E+00 0.2412 0.121 

prof 0.032 -0.102 0.165 1.03E+00 1.18E+00 0.9025 0.102 
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couloir‟s characteristics are relatively unique, and that predicting PTLs in other couloirs 

based on the specific relationships from this couloir is challenging at best. 

 

 

 

Fig. 34.  Success rate (a) and absolute error (b) cross-validation results for the final 

logistic model of Upper AZ1. 

a 

b 
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 In summary, classification techniques or logistic regression models are both 

capable of successfully modeling the observed patterns of PTLs in Upper AZ1, with 

success rates above 80%.  While some of the secondary parameters vary in the models, 

both model structures agree on a very strong association between relative elevation and 

PTLs that is robust to changing minimum slab criteria. Exposure is also important in both 

models and robust to different slab criteria, but with a somewhat weaker contribution.  

Although the models suggest that specific relationships exist between PTLs and the 

terrain for this couloir, these relationships carry poorly to other couloirs.  For example, 

the classification models for this couloir draw a considerable amount of success from the 

strong relationship with rel.elev by partitioning a high proportion of observations towards 

PTLs above a relative elevation threshold of 35%.  This specific relationship does not 

successfully apply to the other couloirs in this study, thus the poor cross-validation 

results.   However, this case study illustrates how for a specific couloir, certain terrain 

parameters are strongly associated and able to reasonably predict the presence of PTLs in 

that couloir.   

Depth Hoar Results and Discussion 
 

Individual Couloirs 
 

 The results and discussion in this section are for all of the couloirs in which a 

layer of depth hoar (or developed facets at the base of the snowpack) was tracked.  This 

includes all of the couloirs on Lone Mountain and the two couloirs on Teton Pass.   PTLs 

for these data are defined as any location with the presence of a basal weakness and an 

overlying slab of at least 15 cm (Table 2).  Here I examine whether our observations of 



94 
 

depth hoar PTLs can be successfully modeled for each individual slope and, if so, which 

parameters are most important for these models and how well these models apply to other 

couloirs.  The results of the KS-tests and individual modeling are summarized in Tables 

10 and 11 and Fig. 35. 

 

  

Fig. 35.  Cumulative measures of importance for each parameter for depth hoar PTLs 

from four tests: significance from the KS-test, first node in the pruned classification tree, 

most important parameter in the Random Forest model, and appearance in the lowest 

AICc logistic regression model. 
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Table 10.  KS-test results testing whether the distributions of individual couloir depth hoar PTLs and non-PTLs are different for each 

parameter.  Significant results, indicated by bold text and green cells, suggest that the parameter may be useful in independently 

discriminating locations of PTLs. 

 

Kolmogorov-Smirnov goodness-of-fit test results: P-values 

Couloir 

ID# 1 2 5a 6a 7a 8a 9a 10a 11 12 13 14 15a 16 17a 18 19a 20 21a 

rel.elev 0.03 0.00 0.00 0.46 0.00 0.02 0.38 0.11 0.90 0.08 0.71 0.01 0.26 0.19 0.08 0.01 0.63 0.83 0.00 

 slope 0.41 0.09 0.04 0.59 0.00 0.40 0.07 0.06 0.77 0.37 0.98 0.12 0.15 0.89 0.70 0.05 0.21 0.50 0.16 

EW. 

aspect 0.30 0.01 0.02 0.82 0.26 0.92 0.42 0.64 0.77 0.30 0.69 0.96 0.28 0.57 0.63 0.55 0.10 0.04 0.77 

NS. 

aspect 0.25 0.01 0.02 0.82 0.65 0.98 0.42 0.97 0.63 0.24 0.30 0.96 0.40 0.65 0.07 0.89 0.16 0.04 0.77 

prof 0.26 0.26 0.01 0.83 0.33 0.99 0.93 0.04 0.82 0.51 0.97 0.48 0.52 0.35 0.46 0.18 0.73 0.67 0.02 

plan 0.10 0.97 0.01 0.04 0.10 0.60 0.98 0.48 0.27 0.34 0.03 0.64 0.66 0.11 0.61 0.39 0.00 0.58 0.68 

solar 0.27 0.03 0.00 0.70 0.03 0.31 0.27 0.23 0.55 0.85 0.34 0.12 0.47 0.54 0.74 0.02 0.29 0.21 0.24 

wind 0.59 0.00 0.00 0.00 0.09 0.91 0.67 0.22 0.94 0.04 0.23 0.23 0.91 0.55 0.53 0.45 0.59 0.66 0.80 

expo 0.18 0.31 0.00 0.00 0.08 0.07 0.32 0.17 0.06 0.22 0.06 0.92 0.51 0.42 0.94 0.66 0.01 0.83 0.59 

edge 0.30 0.01 0.55 0.26 0.00 0.38 0.03 0.15 0.10 0.14 0.99 0.02 0.00 0.21 0.10 0.26 0.34 0.41 0.01 

wind. 

edge 0.38 0.01 0.00 0.60 0.10 0.47 0.12 0.11 0.47 0.88 0.58 0.71 0.07 1.00 0.25 0.14 0.15 0.53 0.11 

9
5
 



 
 

 

Table 11.  A summary of predictive success and skill for both model structures, as well as most important parameters associated with 

these models for the individual couloir modeling of depth hoar PTLs. 

Couloir 

ID# 
First node 

RF most 

important 

(Fixed 

PTL) 

RF 

True 

Skill 

Stat 

RF 

Success 

Rate 

RF most 

important 

(Uncertain 

PTL) 

Lowest AICc logistic model 

Logistic 

Mean 

Absolute 

Error 

Logistic 

Success 

Rate 

Logistic 

True 

Skill 

Stat 

1 rel.elev rel.elev 0.11 61% rel.elev PTL ~ 1 + prof^2 + expo + rel.elev 

+ rel.solar + wind.edge + wind 

0.37 73% 0.35 

2 rel.elev rel.elev 0.36 69% rel.elev PTL ~ 1 + prof + rel.elev + 

rel.elev^2 + wind + wind^2 

0.35 75% 0.46 

5a rel.elev rel.elev 0.55 80% rel.elev PTL ~ 1 + expo + rel.elev + 

rel.elev^2 

0.20 87% 0.72 

6a wind wind 0.43 71% wind PTL ~ 1 + rel.elev + wind 0.33 79% 0.57 

7a edge slope 0.37 74% slope PTL ~ 1 + expo + rel.view + 

slope^2+ rel.elev^2 + wind^2 

0.26 79% 0.42 

8a rel.elev rel.elev 0.18 62% rel.elev PTL ~ 1 + prof + prof^2 + expo + 

rel.elev + rel.elev^2 + plan + 

wind.edge + wind.edge^2 

0.29 79% 

0.57 

9a edge rel.solar 0.12 57% wind PTL ~ 1 + edge + prof + prof^2 + 

slope + slope^2 

0.32 78% 0.52 

10a prof prof -0.05 49% rel.elev PTL ~ 1 + edge^2 + rel.view + 

rel.elev + rel.elev^2 + rel.solar 

0.43 70% 0.31 

11 expo rel.solar -0.15 42% rel.solar PTL ~ 1 + edge^2 + expo + slope^2 

+ wind.edge^2 + wind + wind^2 

0.40 71% 0.42 

12 wind wind 0.22 65% wind PTL ~ 1 + edge + expo + slope + 

slope^2 + rel.elev^2 + rel.solar + 

wind + wind^2 

0.37 72% 

0.39 

13 plan wind -0.15 51% wind PTL ~ 1 + prof^2 + expo + wind^2 0.40 69% 0.08 

9
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Table 11 Continued 

 

 

 

Couloir 

ID# 
First node 

RF most 

important 

(Fixed 

PTL) 

RF 

True 

Skill 

Stat 

RF 

Success 

Rate 

RF most 

important 

(Uncertain 

PTL) 

Lowest AICc logistic model 

Logistic 

Mean 

Absolute 

Error 

Logistic 

Success 

Rate 

Logistic 

True 

Skill 

Stat 

14 edge edge 0.31 66% edge PTL ~ 1 + prof + prof^2 + slope + 

wind.edge^2 

0.40 72% 0.40 

15a edge edge 0.13 58% edge PTL ~ 1 + edge + expo + wind.edge 0.42 68% 0.34 

16 rel.elev rel.elev 0.00 75% rel.elev PTL ~ 1 + rel.elev^2 + plan 0.31 80% 0.16 

17a NS.aspect wind -0.02 60% wind.edge PTL ~ 1 + edge^2 + rel.elev + 

wind.edge^2 + wind 

0.35 71% 0.22 

18 wind.edge rel.solar 0.10 60% rel.solar PTL ~ 1 + edge + edge^2 + 

rel.solar + wind^2 

0.37 73% 0.31 

19a plan plan 0.06 57% plan PTL ~ 1 + prof + expo + slope^2 + 

rel.elev^2 

0.36 75% 0.49 

20 EW.aspect NS.aspect 0.13 58% NS.aspect PTL ~ 1 + expo + wind.edge^2 0.46 64% 0.18 

21a rel.elev rel.elev 0.31 72% rel.elev PTL ~ 1 + edge + prof + rel.elev + 

rel.elev^2 

0.28 82% 0.62 

Mean   0.16 62%   0.35 75% 0.40 

9
7
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 The modeling of individual couloirs shows a wide range of different parameters 

are influential in PTL modeling.  Sixteen of the nineteen samples have at least one 

parameter that has a significantly different distribution for PTLs and non-PTLs (Table 

10).  Rel.elev and edge are most frequently associated with these differences, per the KS-

test.  The first node used in the pruned classification tree, which indicates which 

parameter best differentiates the PTLs observations from non-PTLs, is also most 

consistently rel.elev and edge (Table 11).  In the Random Forest models, rel.elev is most 

frequently the most important as well.  Wind appears second most frequently.  Both of 

these parameters are robust to changes in the PTL slab criteria, implying that they are 

important no matter the slab depth considered.  The important parameters in the final 

logistic models are more variable between couloirs and include some parameters that are 

not important in the classification models.  However, rel.elev and/or its quadratic term are 

again in the majority of the “best” logistic models, followed by expo in importance 

(Table 11).  In the cases where the most important term from the Random Forest model is 

not used in the logistic model, it is usually because the logistic model selects a correlated 

parameter that describes a similar physical process but is more effective in doing so 

linearly.  When all of these measures of importance from each model or statistical test are 

considered, rel.elev has the most discriminating power of all of the parameters (Fig. 35).  

 Random Forest model success rates range from 42% for the Claw on Teton Pass 

to 80% for Upper AZ1, averaging 62%  (Table 11).  Logistic model success rates are 

consistently higher, predicting on average 75% of the observations correctly with over 

twice the model skill. The mean absolute error is 0.35, so that on average for each sample 
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point the predicted probability from the model is 35% off of the true observation.  Given 

the highly complex and variable nature of these couloirs, this is an encouraging result.  

Table 12.  Averaged cross validation results for depth hoar PTL models of each of the 

individual couloirs used to predict PTLs for each of the remaining couloirs. 

 RF success 

rate 

RF True 

Skill Stat 

Logistic 

success rate 

Logistic absolute 

mean error 

Average Xval Results 52.1% 0.017 51.6% 0.489 

 

 Similar to the AZ1 case study, cross validation results between couloirs or within 

common geographic groups or common weak layers are generally poor, averaging 52% 

for the entire dataset (Table 12).   Although the two models differ in structure and 

frequency in the parameters used, their prediction success rates are comparably poor 

across couloirs.  True skill scores and absolute mean errors fluctuate over the entire 

cross-validated dataset, but generally show an inability to discriminate (Table 12). 

Several exceptions exist where cross-validation results are more promising, particularly 

within the Upper A to Zs and the Headwaters.  For example, Upper AZ3 averages a 59% 

success rate and a true skill score of 0.19 across the other Upper A to Zs in the Random 

Forest model (Table 13).  This is only an 11% decrease in success from the estimated 

success rate for the data used to calibrate the model. These successes are usually limited 

to only the geographic group that the couloir belongs to and not the depth hoar group as a 

whole.   
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Table 13.  Cross validation results for the Random Forest model for Upper AZ3 

compared to other couloirs on the same headwall. 

 

 A more typical example of cross-validation results is Great Falls where success 

rates fluctuate above or below 50% and are only slightly above 50% for couloirs of the 

same geographic group, the North Summit in this case (Fig. 36a).   The worst-case 

scenario is exemplified by Upper AZ2, where the Random Forest model predicts nearly 

all of the other couloirs worse than the flip of a coin (Fig. 36b).  These results show how 

specific rules of thumb for the terrain in one couloir would be troublesome if applied to 

others.   

 Results from the individual couloir models have numerous implications.  First, it 

appears that several parameters are more frequently associated with the presence or 

absence of PTLs, namely rel.elev, edge, expo and wind. This implies that differences in 

PTLs are most frequently associated with different elevations along the couloir, different 

distances from the edge of the couloir, or different levels of wind or terrain exposure 

(e.g., Fig. 37).  These parameters are all closely related to the effects of wind loading, 

wind scouring, and wind protection, a point which I explore in the following sections. 

Relative elevation is the most important parameter in nearly half of the couloirs.  These 

results have important implications:  a snow pit showing the presence or absence of a 

weakness at the bottom of a couloir is unlikely to be representative of the top, and vice 

versa.  The same concept applies to these other important parameters.   

 Cross-validation statistic Current: AZ3 AZ1 AZ2 AZ4 AZ5 

True Skill Stat 0.27 0.20 0.20 0.16 0.20 

Success Rate 70% 61% 59% 55% 62% 
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Fig. 36.  (a) Cross-validation results for Great Falls, exemplifying typical cross-validation 

results from the set of 21 couloirs.  (b) Upper AZ2 showing worst-case scenario cross-

validation results, where applying the model to other couloirs causes worse predictive 

success than flipping a coin 

a 

b 
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Fig. 37.  Examples of four parameters that are most commonly associated with 

presence/absence of PTLs for individual couloirs. (a) Relative elevation (b) Distance 

from the edge of the couloir.  (c) Exposure index.  (d) Wind exposure index.   

a b 

c d 
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  Although results suggest that some parameters are more frequently associated 

with PTLs, the cross-validation results suggest that their slope-scale influences vary 

significantly and are generally unpredictable from couloir to couloir.  For a given 

parameter that appears important in several couloirs, unique thresholds are used in the 

classification trees and different coefficients are used in the logistic regression models, 

and these modeled effects do not appear to carry over well from one couloir to the next.  

In several cases, a given terrain parameter actually has an entirely opposite effect on the 

presence of a PTL.  For example, higher relative elevations are strongly associated with 

PTLs on Lone Lake Couloir, while more PTLs are found at the lower elevations on 

Upper AZ4.   

 The marginally successful cross-validation results for several couloirs such as 

Upper AZ3 suggest that in some cases, specific terrain influences from one couloir may 

be somewhat useful for predicting weak zones for other couloirs in the same cirque.  The 

best predictive success rates are for couloirs where I was most capable of predicting PTLs 

as we moved across the slope during field sampling.  This is exciting because it suggests 

the models incorporate some of the physical processes that I intuitively draw from as an 

experienced practitioner. 

Geographic Groups 
 

 The following results and discussions are for all geographically similar groups in 

which we tracked depth hoar (Table 2).  This analysis changes scale from individual 

couloirs to groups of closely spaced couloir or couloirs at the mountain scale (Fig. 21).  I 

also consider the multi-mountain range scale by combining the Teton Pass couloirs with 
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the Lone Mountain couloirs.  Data for each group are analyzed as a whole and 

summarized in Tables 14 – 18, with statistical outputs in Appendix B.  I then attempt to 

explain slope-scale terrain/PTL relationships that exist at the cirque or headwall scale, 

mountain scale, or multi-mountain range scale. 

Table 14.  Model success rates and true skill scores (TSS) for depth hoar group modeling. 

 

 

 

 

 

 

 

 

 

Cirque Groups 

Pruned 

Tree 

nodes 

Pruned 

Tree 

Success 

Pruned 

Tree 

TSS 

Random 

Forest 

success 

Random 

Forest  

TSS 

Logistic 

Success 

Logistic 

TSS 

The Gullies 8 79% 0.60 67% 0.27 68% 0.21 

Upper A to Zs 7 75% 0.49 68% 0.34 68% 0.34 

Teton Pass 10 80% 0.61 42% -0.17 53% 0.01 

Headwaters 6 69% 0.45 62% 0.12 56% 0.18 

North Summit 8 78% 0.53 60% 0.03 61% 0.22 

Lone Lake Cirque 8 85% 0.71 59% 0.09 54% 0.22 

Cirque  Means 7.8 78% 0.57 60% 0.11 60% 0.20 

Lone Mountain 2 63% 0.28 62% 0.18 52% 0.10 

All Depth Hoar 

 Samples 
2 63% 0.28 63% 0.18 52% 0.10 
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Table 15.  KS-test results for depth hoar couloir groups, testing whether each parameter 

has a significantly different distribution for PTLs in comparison to non PTLs when 

considering all of the couloirs in a single geographic group.  Significant results, identified 

by bold font and green cells, suggest that these parameters may be independently used to 

indentify PTLs across an entire cirque or mountain. 

 

 

 

Table 16.  The top logistic model for each depth hoar group with the lowest QAICc. 

  

 Kolmogorov-Smirnov goodness-of-fit test results:  P-values 

Group Gullies 

Upper 

AZs 

Teton 

Pass Headwaters 

N. 

Summit 

Lone 

Lake 

Lone 

Mtn 

All Depth 

Hoar 

Samples 

rel.elev 0.22 0.10 0.36 0.32 0.91 0.00 0.64 0.64 

slope 0.14 0.00 0.54 0.01 0.02 0.49 0.31 0.31 

EW.aspect 0.07 0.17 0.28 0.67 0.42 0.24 0.04 0.04 

NS.aspect 0.07 0.29 0.96 0.53 0.06 0.24 0.00 0.00 

prof 0.49 0.12 0.05 0.21 0.40 0.14 0.09 0.09 

plan 0.41 0.00 0.83 0.03 0.14 0.92 0.60 0.60 

rel.solar 0.04 0.03 0.87 0.60 0.06 0.87 0.54 0.54 

wind 0.03 0.28 0.65 0.35 0.73 0.73 0.13 0.13 

expo 0.44 0.00 0.20 0.05 0.11 0.53 0.19 0.19 

edge 0.50 0.00 0.80 0.00 0.07 0.18 0.00 0.00 

wind.edge 0.28 0.47 0.31 0.21 0.13 0.24 0.22 0.22 

Group Lowest QAICc Model 
Gullies PTL ~ 1 + prof + expo + rel.view + wind

2
 

Upper AZ's PTL ~ 1 + expo + rel.view + slope
2
 + wind

2
 

Teton Pass PTL ~ 1 

Headwaters PTL ~ 1 + edge 

N. Summit PTL ~ 1 + edge
2
 + wind.edge

2
 

Lone Lake PTL ~ 1 + prof 

Lone Mountain PTL ~ 1 + edge + edge
2
 

All Depth Hoar  PTL ~ 1 + edge + edge
2
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Table 17.  The most important parameters for each depth hoar group, their general 

association with PTLs, and under what minimum slab criteria they perform best. 

 Parameter PTL distribution pattern 

Robustness to Uncertain 

PTLs 

T
h

e 
G

u
ll

ie
s 

rel.elev more at lower elevations below 45% all slabs 

Prof more on moderate concave slopes all slabs 

Wind more in moderate wind shelter thick slabs 

Aspect more on  aspects 25
o
 to 45

o
, less on 65

o
 to 95

o
 thin slabs 

wind.edge more 12 to 23 m from windward edge thick slabs 

U
p

p
er

 A
 t

o
 Z

s 

Expo more on unexposed terrain thin slabs 

rel.view less at more visible points from ridge all slabs 

Wind more in moderate wind shelter all slabs 

Edge more further than 2.5 m from edge thick slabs 

Slope more below 46
o
 thick slabs 

rel.elev more at lower elevations below 25%  thick slabs 

rel.solar more between 50% and 95% all slabs 

T
et

o
n

 

P
a

ss
 

Prof more on convex slopes all slabs 

rel.solar more above 50% thick slabs 

H
ea

d
w

a
te

r
s Edge 

more further than 3 m from edge, less at the 

furthest from edge all slabs 

Wind more at higher wind exposure thin slabs 

Expo less at highly unexposed thin slabs 

Plan less at highly concave all slabs 

Slope more below 43
o
 all slabs 

N
o

rt
h

 

S
u

m
m

it
 

Edge less further than 7 m from edge thin slabs 

wind.edge more 15 m from windward edge all slabs 

L
o

n
e 

L
a

k
e 

C
ir

q
u

e
 rel.elev more at upper elevations above 50% thin slabs 

Prof more on concave slopes all slabs 

wind.edge more closer than 8 m from the edge thick slabs 

Aspect more on aspects 295
o
  to 320

o
  thick slabs 

A
ll

 D
ep

th
 H

o
a

r 
&

 

L
o

n
e 

M
o

u
n

ta
in

 Aspect more on aspects 115
o
 to 180

o
   thin slabs 

Edge more between 3 m and 6 m from edge moderate slabs 

wind.edge 

more between 3 m and 7 m from windward 

edge thick slabs 

Wind more in moderate wind shelter thick slabs 

rel.view more on less visible slopes from ridgeline thick slabs 
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Table 18.  The most important parameters in each depth hoar group and the measures 

used to identify their importance. 

  

Pruned Tree Random Forest Logistic Logistic Logistic 

 
Parameter 

Level of Node 

Appearances 

Mean 

Decrease in 

Accuracy 

Relative 

Support  

Significant 

confidence 

intervals? Odds Ratio 

T
h

e 
G

u
ll

ie
s 

rel.elev None 0.024 rel.elev
2
=0 .10 no   

prof 4th  0.008 prof=1.00 yes 1.074 

wind None 0.010 wind
2
=0.90 no  

aspect NS=2nd  NS=0.022 

 EW= 0.014 

NS=0.00  

EW=0.00 

no  

wind.edge None 0.009 0.00 no   

U
p

p
er

 A
 t

o
 Z

s 

expo 1st  0.024 expo=1.00 yes 0.920 

rel.view None 0.013 rel.view=0.96 yes 0.751 

wind None 0.018 wind
2
=0.77 no  

edge 4th  0.016 edge
2
=0.10 no  

slope 6th 0.011 slope
2
=0.84  

slope=0.16 

no  

rel.elev 3rd  0.013 rel.elev=0.28 no  

rel.solar 2nd, 5th 0.010 rel.solar=0.34 no  

T
et

o
n

 

 P
a

ss
 

prof 1st,  2nd 0.010 0.00 no 
  

H
ea

d
w

a
te

r
s 

edge 1st, 4th 0.007 edge=0.84  

edge
2
=0.07 

no  

wind 5th 0.009 wind
2
=0.09  

wind=0.06 

no  

expo 2nd 0.004 expo=0.14 no  

plan None 0.004 plan=0.07 no  

slope 3rd 0.008 slope=0.07 no   

N
o

rt
h

 

S
u

m
m

it
 

edge 1st, 4th, 5th 0.008 edge
2
=0.96 yes 0.998 

wind.edge 2nd 0.010 wind.edge
2
=0.59 

wind.edge=0.08 

   

L
o

n
e 

L
a

k
e 

C
ir

q
u

e
 

rel.elev 1st, 3rd 0.015 rel.elev=0.09 

rel.elev
2
=0.08 

no  

prof 3rd 0.008 prof=0.81 no  

wind.edge None 0.004 wind.edge
2
=0.14 

wind.edge=0.12 

no  

aspect 2nd NS=0.009 

EW=0.008 

0.00 no   

A
ll

 D
ep

th
 H

o
a

r 
&

 

L
o

n
e 

M
o

u
n

ta
in

 

aspect 1st 0.025 0.00 no   

edge None 0.010 edge=1.00 

 edge
2
=1.00 

edge=yes  

edge
2
=yes 

edge=1.050 

edge
2
=0.996 

wind.edge None 0.008 wind.edge=0.07 

wind.edge
2
=0.07 

no  

wind None 0.008 wind
2
=0.14 

wind=0.07 

no  

rel.view None 0.007 rel.view=0.10 no   
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 In comparison to individual couloirs, the cirque-scale groups of couloirs have 

decreased success rates and model skill, with a loss of roughly 10% in predictive success 

(Figs. 38 and 39).  Despite this loss in modeling ability from individual couloirs, Random 

Forest and logistic regression models have promising results considering the complexity 

of the environment: predictive success rates average around 60% (Table 14).  These 

results have important implications.  First, slope-scale terrain parameters can still be used 

to describe the presence of PTLs across cirques or headwalls, but these relationships are 

not as strong: predictive ability suffers as a consequence.  The complex terrain/PTL 

relationships in a couloir are best described at the single slope scale, but broader patterns 

still exist for larger geographic regions.  

 When modeling the effects of terrain on PTLs at an even larger scale (all of Lone 

Mountain), the success rates average below 60% (Fig. 40 and Table 14), indicating that 

relationships with slope-scale parameters have reduced applicability beyond their 

respective cirque or headwall.  Including the Teton Pass couloirs to expand to a multi-

mountain range scale has nearly the same results as the Lone Mountain group with the 

same interpretation.  

 For the cirque scale groups, there are a number of parameters that have strong 

relationships with PTLs for each of the couloirs in the group.  Although the influences of 

the parameters change for each cirque, they are related to similar physical processes.  

These parameters are described below using examples from the cirques and headwalls on 

Lone Mountain.   



 
 

 

Fig. 38.  Logistic model success rates for individual couloir modeling, showing relatively high success rates for slope scale 

predictions. 

1
0
9

 



 
 

 

Fig. 39.  Logistic model success rates for couloirs in the same cirque, showing relatively moderate success rates for cirque scale 

predictions. 
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Fig. 40.  Logistic model success rates for all of the couloirs on Lone Mountain, showing relatively poor success rates for mountain 

scale predictions. 

1
1
1
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 One of the key physical processes in depth hoar formation and the presence of 

PTLs is a strong temperature gradient driven by a shallow snowpack.  This is conveyed 

through the terrain differently depending on the season, the time of year, the depositional 

patterns in a cirque, and finally the slope-scale patterns within a couloir.  The influence of 

cirque-scale terrain on the slope-scale relationship with PTLs is best illustrated by the 

Lone Lake Cirque group.   

The couloirs sampled in Lone Lake Cirque are unique because they are more 

west-facing than any of the other couloirs on Lone Mountain.  With a more windward 

aspect, wind erosion prevented deep, stable snowpacks from developing, despite the late 

timing of sampling for these two couloirs.  For the two couloirs sampled in this cirque, 

rel.elev and prof are highly important; both are independently capable of describing a 

noticeable decrease in PTLs at lower elevations (Tables 17 and 18).  Without considering 

larger scale effects, the physical process explaining why lower elevations have fewer 

PTLs is not obvious.  The classification tree‟s first node is at rel.elev = 0.51, with fewer 

PTLs at lower elevations.  This elevation roughly corresponds with the height of the west 

wall of the cirque, which offers protection from the prevailing southwest winds and 

promotes deep and stable snow at most lower elevations, especially for couloirs closer to 

the wall. The upper elevations, however, are blasted by some of the strongest winds on 

the mountain, scouring the snowpack to depths that allow strong temperature gradients 

and depth hoar formation (Fig. 41).  
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Fig. 41.  Map of Lone Lake Cirque, which shows how the west wall of the cirque 

provides protection from the prevailing winds at lower elevations, which fosters a deep 

and stable snowpack late in the season.  At upper elevations where the snowpack is 

generally shallow and faceted, the leeward aspects provide enough shelter from winds to 

preserve depth hoar from wind erosion and develop significant slabs, especially on 

Mullet Couloir.   

 

The second process relating to PTLs in Lone Lake Cirque is fierce wind erosion 

on the leeward sides of the couloirs at the most exposed upper elevations which prevents 

PTLs.  The very shallowest portions of the slope are comprised of stout, pencil to knife-

hard wind-packed grains without depth hoar.  It appears that the snowpack here gets 

overturned and beat by the wind with such force that it becomes a solid wind slab without 

adequate pore space to allow depth hoar growth, despite its shallow depth.  Another 
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possible explanation is that all of the snow grains, including any depth hoar, are swept 

away during high winds leaving only a stout early season crust. Both models explain this 

relationship differently; the logistic regression model uses wind.edge, while the Random 

Forest uses a threshold aspect of roughly 295
o
 to differentiate PTLs.  On the windward 

edges (or aspects greater than 295
o
), the snow is protected enough to preserve depth hoar 

and grow significant slabs (Fig. 41), especially on Mullet Couloir which is more exposed 

to prevailing winds at all of its elevations.   

Lone Lake illustrates how slope-scale terrain influences are highly dependent on 

the characteristics of the cirque or larger scale processes.  For example, the threshold 

value of rel.elev=0.51 is due to the west wall of the cirque which is specific to the Lone 

Lake Cirque samples only.   

Another key process relating to the presence of PTLs is accumulation of a 

sizeable enough slab over depth hoar to be threatening.  This process is influenced by 

parameters associated with wind deposition, wind protection, and sluffing.   Although the 

parameters influencing these processes are consistent (wind.edge, wind, expo, plan, edge, 

rel.view, rel.elev, aspect, prof, and slope), their importance and influence vary depending 

on larger terrain characteristics, time of year, and seasonal trends.   A comparison of the 

Upper A to Zs and Headwaters groups demonstrates how the influences of terrain as it 

relates to slab formation for PTLs can be entirely opposite depending on mountain-scale 

effects .   

The snowpack on the Upper A to Z Headwall is notoriously shallow with 

widespread depth hoar (Babinou-Z, pers. comm., 2010).  In the season that we sampled 
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the Upper AZ‟s, a fairly thin but uneven slab covered a widespread layer of depth hoar 

(Fig. 42).  Thus, the most important parameters for PTLs on Upper AZ‟s those that 

predict deep enough slabs to be threatening.  These are edge, expo, rel.view, wind, slope, 

and rel.elev (Tables 17 and 18).  The latter two parameters associate with frequent 

sluffing which generally prevents slabs from forming on the upper parts of the couloirs 

(Fig. 43).   These effects are enhanced with frequent near-ridge wind scouring.  However, 

edge, expo, rel.view, and wind are all important in one or both of the model structures for 

characterizing locations where slabs of critical size form over the pervasive depth hoar 

(Tables 17 and 18).  PTLs have a positive association with distance from edge, 

decreasing terrain exposure, low visibility from the major windward ridgeline, and high 

wind sheltering, as these are all related increased windloading  (Fig. 43 and Table 17). 

 

 

Fig. 42.  Histograms of snow depth (HS) and thickness of depth hoar (HDH) for the 

Upper A to Zs and the Headwaters, showing a different snowpack structure between the 

two locations with much shallower snow depths and more depth hoar growth in the 

Upper A to Zs. 
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Fig. 43.  Map of the Upper A to Z chutes, showing how PTLs are associated with lower 

exposure and lower slope angles in general due to their influence on slabs of threatening 

depth.  The influence of distance from the edge is also apparent. 

 

   In contrast, the Headwaters couloirs, which are on opposite side of the ridge 

from the Upper A to Zs, have a much deeper snowpack (Fig. 42).  These couloirs 

characteristically have a deep slab in the middle (>200 cm) tapering in thickness towards 

the sides and prevalent depth hoar near the sides tapering and strengthening towards the 

middle, where depth hoar typically is not  present because the snow is too deep to 

facilitate strong temperature gradients and depth hoar growth. 

Thus, the effects of some of the terrain parameters predicting PTLs are opposite 

for the Headwaters compared to the Upper A to Zs (Tables 17 and 18).  Unlike the Upper 

A to Zs, in the Headwaters wind, plan, and expo are all important parameters in relating 
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to sheltered zones where the shape and exposure of the couloir promote development of 

deep and/or dense snowpacks without PTLs (Fig. 44).  The effect of edge is different too.  

For the furthest distances from the edge of the couloir, the snow is deep and strong, so 

few PTLs are present.  Nearest the couloir, depth hoar typically prevails but lacks a 

threatening slab (Fig. 44).  Thus, more PTLs are concentrated between 3 m and 6 m from 

the edge.  This is a fairly weak relationship compared to the others, but it is successfully 

modeled with two edge nodes in the classification models and an extra edge
2
 term in the 

logistic regression model.   

 

 

Fig. 44.  Map of PTLs on First Fork in the Headwaters, illustrating how the effect of 

terrain exposure is opposite for the Headwaters than for the Upper A to Z chutes (Fig. 

43).  Also, the effect of distance from the edge of the couloir is apparent, especially with 

Cold Springs (Fig. 45) and First Fork, where PTLs are concentrated several meters from 

the edge.   
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 The three couloirs on the North Summit are fairly diverse despite being located in 

the same alpine cirque (Fig. 6).  Trident is a more west-facing couloir and can be stripped 

of snow with strong northwest winds, whereas Great Falls is on the leeward side of the 

cirque. It has a much deeper snowpack that can get loaded while Trident gets scoured.  

Tears Couloir is located between the two and shares characteristics of both.  Despite this 

diversity, a decrease in PTLs with increasing distance from the edge of the couloir is a 

consistent relationship for this cirque.  This effect is similar to the relationship observed 

in the Headwaters, which is reasonable because these two cirques have similar 

characteristics.  However, the presence of more PTLs closer to the edges on North 

Summit differs from the relationship in the Headwaters.  This may be due to a sampling 

date of nearly two months later for the North Summit couloirs.  For the relatively early 

season sampling of the Headwaters, the points nearest the edge were faceted but lacking a 

slab, whereas similar faceted locations in the North Summit were buried beneath a 

threatening slab later in the season.  This exemplifies how the influences of terrain also 

depend on the progression of the winter season. 

There are several other physical processes explained by parameters on the south-

facing slopes of the Upper A to Zs that are associated with PTLs.  Despite extensive 

depth hoar on these slopes,  there are two general terrain areas where depth hoar is most 

noticeably absent: deeper pillows which are in the most shaded slopes and the slopes that 

are shallow enough to allow solar radiation to strengthen the entire snowpack (Tables 17 

and 18).  Solar radiation only penetrates the upper 20 to 40 cm of old snow (McClung 

and Schaerer, 2006).  The strengthening of buried depth hoar through melt freeze 



119 
 

processes or insolation is related to a shallow snowpack, where free water or solar 

radiation is able to contact existing depth hoar in areas that receive abundant solar 

radiation.  Terrain exposure and slope angle associate with fewer PTLs based on both 

their lack of significant slabs and strengthening of weaknesses from solar radiation (Fig. 

43 and Table 18).  The areas that receive the least amount of radiation are also associated 

with an absence of depth hoar and no crust formation.  I hypothesize that the widespread 

melt-freeze crusts on the Upper A to Zs enhance faceting (Colbeck, 1991), so the absence 

of crusts, along with deeper snow depths, cause these areas to lack depth hoar.   

The models for Teton Pass have inferior predictive abilities compared to all of the 

other locations.  There are several reasons for the poor results from these couloirs.  First, 

both of these couloirs are on moderately treed slopes.  During field observations I noted 

that the presence of weak depth hoar was most noticeable near trees, where temperature 

gradients are likely amplified by warmer tree trunks.  My analysis does not include any 

parameters such as proximity to trees, and furthermore, a number of the parameters, such 

as rel.solar, wind, and expo, are simply wrong without including the effect of trees in 

these areas.  Second, the GPS accuracy was far worse on Teton Pass than in any other 

location, with average estimated horizontal RMS accuracies of 240 cm and 172 cm 

(Table 2).  I treated these two couloirs as outliers for modeling the entire depth hoar 

dataset by comparing results before and after their exclusion.  The results are very similar 

between the entire depth hoar dataset and just the Lone Mountain couloirs, so I kept them 

in the analysis.   
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By grouping together all of the couloirs with depth hoar and all of the couloirs on 

Lone Mountain, I introduce significant temporal and geographic variability that doesn‟t 

exist for individual couloir modeling and is not as complex as the cirque group modeling.  

Not surprisingly, the predictive abilities of the models are poor (Fig. 40 and Table 14).  

All of the unique interactions between terrain and PTLs at the slope scale and cirque 

scale are “averaged out.”  Not only does this analysis group together couloirs from 

different headwalls and different months of the year, but also completely contrasting 

winter seasons.  The classification trees, which have success rates just above 60% for 

these two larger groups (Table 14), draw most of their success from a non-slope-scale 

relationship, segregating PTL-dense Upper A to Zs from the rest of the data with the 

NS.aspect parameter (Table 18).  If this parameter was normalized for each slope to be a 

more adequate slope-scale parameter, the success rates of the Random Forest models and 

pruned tree models for the Lone Mountain group and “All Depth Hoar” group would be 

considerably lower.  This simply re-emphasizes the point that the influences of slope-

scale terrain parameters depend on larger terrain characteristics and meteorological 

conditions.  

 Although the predictive strengths of these all-encompassing models are weak, 

they do identify edge as an important parameter.   The dueling affect of edge, with fewer 

PTLs at short distances and fewer at long distances is modeled by the use of edge
2 

in the 

logistic regression model (Table 16 and Table 18).  The odds ratio estimates for edge 

suggest that for every meter away from the edge of the couloir, the odds of observing a 

PTL increase linearly by 5% with all other terms held constant.  However, the odds ratio 
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estimates for edge
2
 suggest that for every meter away from the edge of the couloir, the 

odds of finding a PTL decrease by 4% multiplied by the squared distance from the edge. 

Together these terms describe how within the first meter away from the edge, PTLs 

increase in probability as distance from the edge increases up to one meter.  After one 

meter, the probability of finding a PTL decreases at an increasingly greater rate.  While 

this describes an average relationship for all of the data, it suggests that a general “sweet 

spot” for these depth hoar weaknesses is somewhere between 0.5 m and 1.5 m from the 

edge of the couloir (Fig. 45).   Although both of these terms have significant confidence 

limits (Table 18), the final logistic model has a success rate of only 52.4%, so 

relationships described by it are far from a gold standard, but rather, relationships that we 

should be attentive to in avalanche terrain.    
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Fig. 45.  Map of Cold Springs, which exemplifies the "sweet spot" relationship between 

depth hoar PTLs and distance from edge.  More PTLs are clustered between 0.5 m and 

the first several meters from the edge of the couloir. 
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Facet Results and Discussion 
 
 

The following results and discussions are for all of the couloirs in which we 

tracked a near-surface faceted layer.   The faceted layers from the Claw and Unskiabowl 

on Teton Pass are not included in this analysis because the weak layers were too 

widespread for modeling presence/absences, and the GPS and terrain parameters for that 

location are poor quality. 

Individual Couloirs 
 

 The results and discussion in this section are for all of the couloirs in which a 

layer of facets that formed near the surface were tracked.  This includes all five couloirs 

from the Upper AZs where we observed a layer of facets preserved between crusts and 

three couloirs on the northern aspects of Lone Mountain with diurnal facets.  Note that 

both couloirs on Teton Pass exhibited diurnal facets that were nearly entirely widespread 

so modeling their presence as a binary response was not practical, especially considering 

the poor GPS accuracy for these locations.  PTLs for these data are defined as any 

location with the presence of the weak layer (Table 2).  Here I model each individual 

slope, examine the most important parameters from these models, and compare the 

results to depth hoar PTLs.  The results of KS-tests and individual modeling are 

summarized in Tables 19 and 20 and Fig. 46. 
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Fig. 46.  Cumulative measures of importance for each parameter for near-surface facet 

PTLs from four tests: significance from the KS-test, first node in the pruned classification 

tree, most important parameter in the Random Forest model, and appearance in the 

lowest AICc logistic regression model. 

 

Table 19.  KS-test of whether each parameter has a significantly different distribution for 

facet layer PTLs in comparison to non-PTLs.  Significant results, identified by bold font 

and green cells, suggest that these parameters may be used independently to discriminate 

between PTLs and non-PTLs in each couloir. 
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Parameter Importance 

Logistic 

Random 
Forest 
Pruned Tree 

KS-test 

Kolmogorov-Smirnov goodness-of-fit test results: P-values 

Couloir ID# 5a 6a 7a 8a 9a 17a 19a 21a 

rel.elev 0.14 0.08 0.00 0.02 0.01 0.25 0.46 0.00 

Slope 0.15 0.86 0.00 0.76 0.90 0.81 0.96 0.00 

EW.aspect 0.55 0.19 0.31 0.75 0.07 0.01 0.01 0.93 

NS.aspect 0.55 0.19 0.49 0.75 0.07 0.20 0.04 0.93 

Prof 0.63 0.98 0.18 0.30 0.26 0.94 0.48 0.02 

Plan 0.00 0.44 0.14 0.14 0.23 0.85 0.69 0.08 

Solar 0.96 0.15 0.02 0.17 0.28 0.95 0.16 0.23 

Wind 0.22 0.00 0.03 0.29 0.17 0.07 0.11 0.39 

Expo 0.00 0.05 0.03 0.00 0.42 0.56 0.71 0.06 

Edge 0.00 0.72 0.00 0.62 0.33 0.22 0.72 0.93 

wind.edge 0.04 0.86 0.12 0.41 0.24 0.67 0.00 0.95 



 
 

 

Table 20.  A summary of predictive success and skill for both model structures, as well as most important parameters associated with 

these models for the individual couloir modeling of facet layer PTLs. 

Couloir 

ID# First Node 

RF most 

important  

RF True 

Skill Stat 

RF 

Success 

Rate Lowest AICc logistic model 

Logistic Mean 

Absolute 

Error 

Logistic 

Success 

Rate 

Logistic 

True Skill 

Stat 

5a Edge edge 0.53 91% PTL ~ 1 + edge + prof^2 + rel.elev + 

plan 

0.03 97% 0.89 

6a wind wind 0.13 88% PTL ~ 1 + edge + edge^2 + expo + 

wind 

0.04 96% 0.81 

7a edge edge 0.47 77% PTL ~ 1 + expo + rel.view + slope^2 + 

rel.elev^2 + wind^2 

0.23 80% 0.51 

8a expo expo 0.32 66% PTL ~ 1 + prof^2 + expo + rel.view + 

rel.elev + rel.elev^2 + plan + 

wind.edge +wind.edge^2 

0.39 66% 0.48 

9a rel.elev rel.elev -0.06 73% PTL ~ 1 + edge + rel.view + slope + 

slope^2+ rel.elev^2 + wind.edge + 

wind.edge^2 

0.13 90% 0.71 

17a EW.aspect EW.aspect -0.01 90% PTL ~ 1 + edge + wind + wind^2 0.15 91% 0.00 

19a wind.edge EW.aspect 0.37 70% PTL ~ 1 + edge + edge^2 + slope + 

slope^2 + rel.elev + rel.elev^2 + 

wind.edge 

0.24 84% 0.69 

21a prof prof 0.45 80% PTL ~ prof + prof^2 + rel.view + slope 

+ slope^2 + rel.solar + plan 

0.07 97% 0.88 

Mean   0.27 79%  0.16 88% 0.62 

1
2
5
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 Similar to the results from the depth hoar layers in individual couloirs, the most 

important terrain parameters associated with near-surface faceting vary in each couloir.  

Again, relative elevation is most frequently different for facet PTLs and non-PTLs (Table 

19).  Four couloirs are identified with statistically different distributions for rel.elev and 

three for expo.  Edge is the only parameter that is in the first node (i.e., the highest 

discriminating power) of the pruned classification trees more than once (Table 20).  It is 

also the most important parameter in the Random Forest models twice.  In comparison to 

the depth hoar layers, the near-surface faceted layers have a slightly wider variety of 

important parameters, although the sample size is smaller and describes two different 

types of faceting: diurnal facets and facets between crusts.  However, rel.elev and edge 

have the highest cumulative parameter importance, and the top four most important 

parameters are the same for near-surface facet PTLs as for depth hoar PTLs (Fig. 46). 

These near-surface layers are generally more predictable than depth hoar layers, 

improving upon depth hoar success rates by 15%, on average (Table 20).  There is also a 

general pattern where couloirs that have more success in modeling depth hoar also have 

more success in modeling facets (Fig. 47).   
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.  

 

Fig. 47.  Comparisons of logistic (a) and Random Forest (b) model ability for couloirs 

with both depth hoar and near surface facets, showing that in general, models predict 

near-surface facet layers better. 

a 

b 
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Table 21.  Averaged cross validation results for facet PTL models of each of the 

individual couloirs used to predict PTLs for each of the remaining couloirs. 

  
RF success 

rate 

RF True 

Skill Stat 

Logistic 

success rate 

Logistic absolute 

mean error 

Average Xval Results 49.3% 0.044 52.8% 0.478 

 

 

 Despite higher modeling success at the individual couloir level for facets, average 

cross-validation results are also weak as with depth hoar (Table 21); this again 

emphasizes the unique nature of each couloir for this weak layer.  However, there are 

several cases with higher success rates and noticeably better results than any cross-

validation from the depth hoar layers.  From the earlier example with Upper AZ3, the 

true skill statistics are nearly double the cross-validated results on Upper AZ1 and Upper 

AZ2 compared to depth hoar results (Table 22). 

 

Table 22.  Comparison of Random Forest cross-validation results for the Upper AZ3 

depth hoar layer and facet layer with other couloirs in the same headwall. This shows 

considerable improvement in model skill for predicting facets in other couloirs based on 

facet observations in Upper AZ3. 

 

 Cross-Validation Statistic 

Current 

(AZ3) AZ1 AZ2 AZ4 AZ5 

True Skill Stat (Depth Hoar) 0.27 0.20 0.20 0.16 0.20 

True Skill Stat (Facets) 0.47 0.48 0.17 0.01 0.42 

Success Rate (Depth Hoar) 70% 61% 59% 55% 62% 

Success Rate (Facets) 77% 69% 39% 51% 77% 
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 The results from all of the couloirs with near-surface facets carry the same 

message as the individual couloirs analyzed for depth hoar: the influence of  parameters 

vary from slope to slope; therefore, between-couloir predictability is poor.  Compared to 

depth hoar, modeled success rates of the near-surface facets are significantly improved, 

as are several cross-validation results.  This suggests that these near-surface processes are 

easier to predict based on terrain.  This makes sense because the layers we tracked were 

recently formed, thus they have been less exposed to dynamic meteorological and 

metamorphic processes after formation that alter their variability and create unpredictable 

spatial patterns.   

 Although this is a smaller sample size with a wider variety of influential 

parameters in both models, relative elevation, distance from edge, wind exposure, and 

terrain exposure are most frequently important.  Again, these all relate to wind influences.  

As with the depth hoar layers, the influence of these parameters depend on larger scale 

terrain and weather history prior to sampling.  When compared to depth hoar PTLs, there 

are generally a greater number of important parameters in these models.  This indicates 

that more parameters are associated with the presence of near-surface facets at the slope 

scale, which accounts for the improved predictability.  This is probably because 

formation and preservation of recent near-surface layers is controlled by a variety of 

physical processes that interact in a distinct pattern with terrain over a short period of 

time, including wind erosion, solar radiation, and sluffing.  In contrast, depth hoar is a 

slower-forming weak layer influenced by dynamic processes over a longer period of 
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time; thus, the associations between depth hoar PTLs and terrain are limited to the most 

dominant processes.     

 There is a pattern in modeled PTLs where couloirs with higher success rates for 

depth hoar PTLs also have higher success rates facet PTLs in the same couloir (Fig. 47).  

This has several possible explanations.  It could suggest that certain terrain features affect 

different types of weak layers in the same manner.  The more successful predictions for 

both layer types are from couloirs in which these types of features and their influences 

are most pronounced and can be modeled successfully.  The couloirs with less successful 

predictions for both depth hoar PTLs and facet PTLs are because the current terrain 

parameters have relatively weaker relationships, and weak layer presence may be 

controlled by other processes of which we can‟t characterize with the current set of 

parameters.  Another possible explanation is that this pattern of similar relative 

predictability is a byproduct of sampling design.  Depth hoar and facet observations were 

collected at the same points in the couloir and are not spatially independent of each other.   

Geographic Groups 

 

 These results are for the geographically similar groups in which we tracked near-

surface facets.  These include faceted layer between two crusts that was fairly widespread 

across the Upper A to Zs and diurnal facets that were shallowly buried in the North 

Summit/Lone Lake Cirque area.  Data for each group are analyzed as a whole and 

summarized in Tables 23 – 27, with statistical outputs in Appendix B.  In this section I 

summarize and discuss important relationships between PTLs and terrain. 
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Table 23.  KS-test of whether each parameter has a significantly different distribution for 

facet layer PTLs in comparison to non-PTLs when considering all of the couloirs in the 

same geographic group.  Significant results, identified by bold font and green cells, 

suggest that these parameters may be independently used to indentify PTLs across an 

entire cirque or mountain. 

 

 

 

 

 

 

 

 

 

 

Table 24.  Model success rates and true skill scores (TSS) for facet layer group modeling. 

 

 

Table 25.  Top logistic regression model for each facet layer geographic group with the 

lowest QAICc. 

 

 
 

Kolmogorov-Smirnov goodness-of-fit test results:  P-Values 

Group Upper AZs 

North Summit/  

Lone Lake 

rel.elev 0.03 0.23 

slope 0.00 0.04 

EW.aspect 0.00 0.01 

NS.aspect 0.00 0.09 

prof 0.00 0.22 

plan 0.00 0.17 

rel.solar 0.28 0.80 

wind 0.05 0.01 

expo 0.00 0.01 

edge 0.00 0.15 

wind.edge 0.28 0.01 

  

Pruned 

Tree 

nodes 

Pruned 

Tree 

Success 

Pruned 

Tree 

TSS 

Random 

Forest 

success 

Random 

Forest 

TSS 

Logistic 

Success 

Logistic 

TSS 

Upper A to Zs 10 84% 0.68 77% 0.46 65% 0.31 

North Summit/ Lone 

Lake 1 78% 0.63 79% 0.29 57% 0.13 

Group Means 5.50 81% 0.66 78% 0.38 61% 0.22 

Group Lowest QAICc Model 

Upper AZs PTL ~ 1 + expo + rel.elev + plan + wind.edge^2 + wind^2 

N. Summit/ Lone Lake PTL ~ 1 + wind.edge 
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Table 26.  The most important parameters for each facet layer group and their general 

association with PTLs. 

 

 

 Table 27.  The most important parameters in each facet layer group and the measures 

used to identify their importance. 

 

Parameter PTL distribution pattern 

U
p

p
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o
 Z
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Expo more on unexposed terrain 

Plan more at concavities 

Wind more in moderate wind shelter 

Edge more further than 2.5 m from edge, less at 5-7 m from edge 

Slope more below 44
o
 

Prof more at moderate concavities and convexities 

rel.elev more at lower elevations below 50%  

N
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h

 

S
u

m
m

it
 

&
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L
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C
ir

q
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e
 Wind more in high wind shelter 

EW.aspect more on aspects 0
o  

to 180
o
   

wind.edge more closer than 8 m from the edge 

  

Pruned Tree 
Random 

Forest 
Logistic Logistic Logistic 

 
Parameter 

Level of 

Node 

Appearances 

Mean 

Decrease in 

Accuracy 

Relative 

Support 

Significant 

confidence 

intervals? 

Odds 

Ratio 

G
ra

n
it

e 
 

C
a

n
y

o
n

 

rel.elev None 0.001 rel.elev=0.79 no 

 EW.aspect None 0.006 0.00 no 

 
wind.edge 1st 0.000 

wind.edge=0.18 

wind.edge
2
=0.17 

no 

 
Edge None -0.013 

edge=0.77  

edge
2
=0.14 

no 

 

J
a

ck
 C

re
ek

 

rel.elev None 0.050 
rel.elev=1.00 

rel.elev
2
=1.00 

rel.elev=yes 

rel.elev
2
=yes 

perfect 

separation 

Prof 1st 0.061 
Prof 

2
=0.57,  

prof=0.43 
no 

 
Slope 3rd 0.021 

slope
2
=0.81 

 slope=0.37 
no 

 

wind.edge None 0.020 wind.edge=1.00 yes 

perfect 

separation 

Edge 3rd 0.031 edge=1.00 yes 

perfect 

separation 

Wind 2nd 0.021 wind=0.08 no   
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 The initial faceting of the layer in the Upper A to Zs may be attributed to melt-

layer recrystallization or radiation recrystallization, but I am hesitant to apply these 

labels.  The faceted layer was fairly thick (~5 cm), and I believe the majority of the 

faceting was enhanced by the location of the layer between the two crusts and a generally 

high temperature gradient in the shallow snowpack. This layer was only absent in areas 

where no crusts had formed or in areas where the top-most melt-freeze crust was so 

pronounced that it had agglomerated with the crust below it and destroyed the facets 

between the two layers.  This facet layer produced easy stability test results and 

frequently failed in compression tests or extended column tests (e.g., Fig. 18).    

 This widespread layer of facets in the Upper A to Zs had a very recognizable 

pattern (Fig. 48).  A majority of the observations are PTLs, with the few non-PTLs 

located along the peripheries of the couloirs where thinner snowpacks resulted in the 

merging of the two crusts into one without preserving the facets between them.  Any 

number of parameter combinations can accurately predict this spatial pattern; we  need to 

identify all of the parameters that are associated with shallow snowpacks for the Upper A 

to Z terrain (Tables 26 and 27).  These are high exposure or wind exposures, steep slopes, 

higher elevations, proximity to the edge, and most prominent convexities.  The models 

simply look to exclude points with the most extreme collection of these values as non-

PTLs.  Accordingly, numerous parameters are important and the models are larger than 

most of the previous depth hoar models (Table 27).  The greatest success in the entire 

dataset for couloir to couloir cross-validation is on this layer in the Upper A to Zs, 

demonstrating how some layers are more predictable across numerous couloirs.    
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Fig. 48.  Map of the facet layer between two crusts that was observed in the Upper A to 

Zs.  The map shows how non-PTLs are associated with steeper slopes, higher exposure, 

proximity to the edge of couloirs, and higher elevations. 

 

 There are three couloirs from north-facing aspects on Lone Mountain where we 

found diurnal facets that had been recently buried by thin wind slabs.  These layers are 

likely the result of two different faceting events, but both formed under similar 

meteorological conditions.   

 There are two physical processes that either combine or uniquely contributed the 

presence of these diurnal facets.  The first process relates to the formation of this layer 

and the second to its preservation.  The facets formed following a new snowfall of low 

density powder.  Although temperature gradients associated with the incoming and 
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outgoing radiation balance are what ultimately drive diurnal faceting, I suspect that 

radiation balance conditions were suitable for faceting across the entire couloir, or that 

any differences were challenging to model at this scale.  However, with everything else 

being equal, faceting is enhanced in high porosity snow (McClung and Schaerer, 2006).  

The diurnal facets likely only formed in low density, high porosity snow and not in hard 

wind slabs that are typical of the alpine terrain on Lone Mountain.  Therefore, the facets 

are most prevalent where new, low density snow is preserved during or following a 

storm.  The terrain parameters that relate to low density snow are those that are associated 

with protection from the prevailing winds:  wind, wind.edge, and EW.aspect for this 

group (Fig. 49, and Tables 26 and 27).   

 

 

Fig. 49.  Map of Tears Couloir showing how presence of near-surface diurnal facets are 

strongly associated with protection from the wind, which can be explained with the wind 

sheltering parameter or distance from the windward edge. 
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 The second physical process that likely affected the presence of PTLs is their 

preservation following formation and prior to our sampling.  Weak surface layers are 

easily destroyed and swept away in alpine terrain, but the layers are preserved if they are 

protected from wind prior to burial from new snowfall or wind-blown snow.  Again, 

these locations are modeled by the same parameters for the first physical process: 

parameters that associate with wind protection (Fig. 49). 

 The results from these samples suggest that diurnal facets in complex alpine 

terrain are favored in wind protected zones, which are associated with wind, wind.edge, 

and a leeward aspect parameter.  It is obvious from both the Upper A to Zs and the North 

Summit/Lone Lake groups that the parameters associated with near-surface faceting 

highly depend on the physical processes that are either forming or destroying the weak 

layer.   

Surface Hoar Results and Discussion 
 
 

 This analysis and discussion includes several surface hoar layers that were tested 

with ECTs in Granite Canyon and the presence of a shallowly buried surface layer in 

Jack Creek Couloir.    PTLs are defined differently for the two groups.  In Granite 

Canyon, PTLs are where any extended column tests (ECT) failed with full propagation or 

any points along the avalanche crown line that occurred during sampling.  For Jack Creek 

Couloir, a PTL is defined as the presences of preserved surface hoar.  It is important to 

note that the Granite Canyon PTLs are a different type of classification of PTLs from the 

rest of this study: not the presence of a weak layer but the propagation propensity of a 

weak layer.  Thus, the results have different implications than the rest of the dataset.  
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Modeling and KS-test results for each surface hoar group are presented in Tables 28 – 32, 

with statistical outputs in Appendix B.  In this section I highlight and discuss important 

relationships between surface hoar PTLs and terrain.  

Table 28.  KS-test of whether each parameter has a significantly different distribution for 

surface hoar PTLs in comparison to non-PTLs when considering all of samples in the 

same geographic group.  Significant results, identified by bold font and green cells, 

suggest that these parameters may be independently used to indentify PTLs for these 

groups. 

 

 

 

 

 

 

 

 

 

Table 29.  Model success rates and true skill scores (TSS) for modeling of surface hoar 

layers. 

 

Kolmogorov-Smirnov goodness-of-fit test results: P-Values 

  Granite Canyon Jack Creek 

rel.elev 0.014 0.004 

slope 0.500 0.011 

EW.aspect 0.015 0.024 

NS.aspect 0.015 0.122 

prof 0.135 0.000 

plan 0.807 0.916 

rel.solar 0.879 0.291 

wind 0.794 0.002 

expo 0.794 0.688 

edge 0.027 0.003 

wind.edge 0.026 0.014 

  

Pruned 

Tree 

nodes 

Pruned 

Tree 

Success 

Pruned 

Tree 

TSS 

Random 

Forest 

success 

Random 

Forest 

TSS 

Logistic 

Success 

Logistic 

TSS 

Granite 

Canyon 
3 73% 0.46 44% -0.12 66% 0.27 

Jack Creek 7 96% 0.92 88% 0.59 92% 0.85 

Group Means 5 85% 0.69 66% 0.24 79% 0.56 
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Table 30.  Top logistic regression model for each surface hoar geographic group with the 

lowest AICc (for Jack Creek) or QAICc (for Granite Canyon). 

 

 

 
 

Table 31.  Important parameters for each surface hoar group and their general association 

with PTLs. 

 

 

 

 

 

 

Group Lowest (Q)AICc  Model 

Granite Canyon PTL ~ 1 + edge + rel.elev 

Jack Creek PTL ~ 1 + edge + prof^2 + rel.view + slope^2 + rel.elev + rel.elev^2 + wind.edge 

 
Parameter PTL distribution pattern 
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C
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rel.elev more at lower elevations below 40% 

EW.aspect more at aspects from 35
o
 to 180

o
 

wind.edge more closer than 5 m from windward edge 

edge more closer than 5 m from edge 

J
a
ck

 C
re

ek
 

rel.elev more at mid elevations between 35% and 75% 

prof more on concavities 

slope more below 43
o
 

wind.edge more further than 6 m from windward edge 

edge more further than 4 m from edge 

wind more on wind exposed 
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Table 32.  The most important parameters for each surface hoar group and the measures 

used to identify their importance. 

 

 

 The surface hoar layers in Granite Canyon were very reactive (Fig. 19).  

Numerous avalanches failed on these layers in the surrounding backcountry during the 

time frame of our sampling, including one in our study site on the Seven Dwarves.  From 

the poor modeling results for Granite Canyon, it is evident that both robust models have 

difficulty predicting surface hoar weak layer propagation locations based on terrain for 

the entire group analyzed as a whole (Table 29).  It is unclear to me what key physical 

processes are related to PTLs for Granite Canyon, but I suggest PTLs are most strongly 

associated with the slab properties rather than the properties of the buried surface hoar.  

In general, the top layer of surface hoar in A-Chute (SH 4a) and the layer of surface hoar 

in Seven Dwarves (SH 3) are more reactive under thicker slabs.  The areas where ECTs 
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rel.elev none 0.001 rel.elev=0.79 no 

 EW.aspect none 0.006 0.00 no 

 
wind.edge 1st 0.000 

wind.edge=0.18 

wind.edge
2
=0.17 

no 

 
edge none -0.013 

edge=0.77  

edge
2
=0.14 

no 
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rel.elev none 0.050 
rel.elev=1.00 

rel.elev
2
=1.00 

rel.elev=yes 

rel.elev
2
=yes 

perfect 

separation 

prof 1st 0.061 
prof 

2
=0.57,  

prof=0.43 
no 

 
slope 3rd 0.021 

slope
2
=0.81 

 slope=0.37 
no 

 

wind.edge none 0.020 wind.edge=1.00 yes 

perfect 

separation 

edge 3rd 0.031 edge=1.00 yes 

perfect 

separation 

wind 2nd 0.021 wind=0.08 no   
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do not propagate are where the load on the layer is not large enough to drive propagation.  

However, the lower layer on A-Chute (SH 4b) has an inverse relationship to slabs, where 

lighter loads are associated with propagation in the ECTs.  This layer is older; 

propagation may be more likely in areas where it has had less overburden and less 

induced strengthening since being buried.   

 These opposing physical processes are challenging to model with terrain.  

Modeling couloirs separately results in stronger relationships and explainable patterns.  

PTLs are strongly associated with proximity to windward edge and leeward aspects for 

SH3, where the slab was considerably larger and surface hoar had been protected from 

destructive winds (Fig. 50).  This is where a 20 – 30 cm avalanche released during 

sampling (Fig. 51).  Greater wind-loading occurred further from the windward edge and 

further down-slope for SH 4a and SH 4b.  These differences from SH 3 may not be due to 

different processes; SH 3 was collected over a much wider portion of the starting zone, 

while SH 4a and SH 4b are in a smaller zone, so the scales sampling extent are different.  

Distances further down-slope and from the windward edge are associated with PTLs for 

SH 4a, and non-PTLs for SH 4b (Fig. 50). When SH 3, SH 4a, and SH 4b are analyzed as 

a group, all of the relationships are fairly weak, but locations further down-slope in the 

starting zones and closer to the edge or windward edge are more frequently associated 

with PTLs (Tables 31 and 32).    
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Fig. 50.  Map of important terrain parameters and PTLs for the two couloirs in Granite 

Canyon.  The map shows the convoluted relationship between distance from windward 

edge and PTLs, where SH 4a and SH 4b have opposing relationships. The same is true 

for relative elevation.  PTLs for SH3 are strongly related to proximity to windward edge 

and more leeward aspects, where slab development was greater, as well as lower 

elevations, where winds were likely less destructive prior to burial. 
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Fig. 51.  Photograph of Seven Dwarves, showing the crown of an avalanche that released 

on a buried layer of surface hoar (SS-AS-R2-D2) on February 13, 2010 during sampling. 

 

 The results of the Granite Canyon site demonstrate how the location of PTLs can 

depend on complex and even opposing physical process, which are challenging to predict 

with terrain.  The terrain that is strongly associated with PTLs for SH 4a is mostly not 

associated with PTLs for SH 4b, yet they were sampled at the same locations, on the 

same layer type, in the same season. It is evident that for some layer types recent weather 

and snowfall patterns have variable influences on how the terrain interacts with PTLs.  

Furthermore propagation propensity may be influenced by factors independent of terrain 

or at a finer scale than this analysis. 
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 The second analysis in the surface hoar dataset is the presence/absence of a 

surface hoar layer observed in Jack Creek couloir in the Headwaters.  This layer formed 

during a high pressure system between 12/4/10 and 12/6/10 and was subsequently buried 

by several light snowfalls prior to our sampling on 12/11/10.  This layer of surface hoar 

has a fairly distinctive and clustered pattern in the topography (Fig. 52), and the models 

are able to predict the location of PTLs very accurately based on terrain parameters 

(Table 29). 

 One of the dominant processes describing the presence of this PTL is the 

destruction of the surface hoar due to sluffing.  The new snow that fell after the surface 

hoar formed sluffed off of the steepest slopes.  On Jack Creek, there are two significant 

rollovers that likely induced small sluffs that wiped out surface hoar on convex slopes 

and the slightly concave slopes below them.  Slope profile and slope angle are two 

important parameters that associate with this process (Tables 31 and 32).   

 The strong positive associations between surface hoar presence and increasing 

wind exposure and distance from the windward edge were initially surprising (Tables 31 

and 32).  For the windy alpine terrain of Lone Mountain, I expect the destruction of 

surface hoar due to winds to be a primary driver of spatial patterns (McClung and 

Schaerer, 2006).  The wind sheltered slopes and windward edge of this couloir could 

offer protection from the prevailing winds and allow more prevalent surface hoar 

formation or preservation after it formed.  However, a possible explanation for this is a 

shift in wind direction after the surface hoar formed which would reverse the expected 

effects of wind sheltering.  The wind records from the Jack Creek wind station (which is 
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on the ridgeline above the couloir) suggest this is a plausible explanation.   In the several 

days following the surface hoar formation, winds were light and variable in direction, 

averaging 12km/hr.  The day prior to our sampling, the winds strengthened from the 

southwest, from which Jack Creek Couloir is generally sheltered.  That day, winds veered 

to the north and northeast for periods of time, with wind speeds exceeding 40km/hr from 

these directions.  Thus, locations that are normally exposed to prevailing winds actually 

provided shelter from the powerful northeast winds (Fig. 52).  This could explain why 

greater distance from the windward edge and a higher degree of wind exposure are all 

associated with presence of PTLs.   

 The Jack Creek surface hoar layer provides an excellent example of how 

relationships between terrain parameters and presence of PTLs are dynamic depending on 

prior weather history.   It suggests that a thorough understanding of the nature of the PTL 

problem as well as the recent weather history are required to use terrain parameters to 

successfully predict PTLs, especially those at the surface.  
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Fig. 52.  Map of surface hoar PTLs on Jack Creek Couloir, showing how a shift in wind 

patterns after the surface hoar formation could have unexpected effects on parameters 

relating to wind protection.  Areas that are exposed to prevailing winds (in red), offer 

more wind sheltering with a shift in wind direction to the northeast.  Also, the association 

with slope profile is evident.    
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General Discussion 

 

Summary 
 

 The results from modeling potential trigger locations (PTLs) of individual 

couloirs and geographic groups show how a wide range of parameters have varying 

levels of importance and varying influences on the presence of PTLs.  Is there a 

parameter that best explains the presence of PTLs at the slope scale for steep, complex 

terrain?  The answer is that it clearly depends on how processes occurring at a broader 

scale interact with the slope-scale terrain, a point that has been pointed out in previous 

studies (e.g., Schweizer and Kronholm, 2007; Schweizer et al., 2008), but is further 

emphasized in this research.  

 Seasonal and recent weather patterns affect how terrain parameters relate to PTLs.  

Near-surface weak layers are especially sensitive to short-term wind or solar patterns.  

This is illustrated by the surface hoar layer in Jack Creek couloir, where a change from 

the prevailing wind patterns over a period of less than one day changed how wind 

sheltering parameters interact with this fragile surface layer when compared to surface 

weak layers on fairly similar slopes in the North Summit cirque (Figs. 49 and 52).   The 

changing influences of terrain as a result of weather patterns or seasonality agree with the 

results of Birkeland (2001), who found that the relationship between terrain parameters 

and regional scale stability observations was highly variable over the course of a season 

depending on the weather patterns leading up to the sampling day. 

  Regional, mountain, and cirque scale processes clearly affect how slope-scale 

terrain parameters interact with the snowpack. As an example, highly sheltered terrain is 
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related to depth hoar PTLs in the Upper A to Zs, where sheltered slopes are required for 

significant slab formation.  However, on the opposite side of the ridge where snow 

loading is more prevalent in the Headwaters, highly sheltered terrain is related to absence 

of PTLs because the enhanced snow loading in these zones creates a snowpack that is too 

deep for depth hoar formation (Figs. 43 and 44).  Cirque scale processes also have a 

strong influence on the relationship between PTLs and terrain.  For example, the strong 

association between low elevations and an absence of PTLs in Lone Lake Cirque is due 

in part to the sheltering effects of the west wall of the cirque against the prevailing winds 

(Fig. 41).  

  Furthermore, couloirs in the same cirque or headwall can be surprisingly 

different, as evidenced by frequent poor cross-validation results between couloirs in the 

same cirque and decreases in modeling success rates from individual couloir models to 

geographic groups of couloirs in the same cirque (e.g., Figs. 38 and 39 and Tables 12).  

While many physical processes and their related slope-scale parameters may be operating 

across an entire cirque, other processes occur independently on each individual slope.  

These processes differ from slope to slope because each couloir has unique topographical 

characteristics that interact with the larger scale processes differently. An example of this 

is Upper AZ1: the presence of a large cliff above the slope changes how elevation relates 

to PTLs compared with some of the other Upper A to Z chutes (Figs. 4 and 43).    

 While their influences vary from couloir-to-couloir or group-to-group, some 

terrain parameters show the ability to discriminate PTLs better than others.  For PTLs in 

which depth hoar is the concern, relative elevation, distance from the edge of the couloir, 
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degree of wind sheltering, and degree of terrain exposure are most frequently the most 

influential parameters in models (Table 11).  KS-tests for individual couloirs show that 

elevation and distance from the edge are most commonly able to independently 

discriminate the presence of PTLs (Table 10). It is difficult to quantify the most 

important parameters from the logistic models because it depends on what other 

parameters are in the model and how uncorrelated they are from other parameters.  

However, the aforementioned parameters, along with profile of the slope, appear most 

frequently in the top logistic models (Table 11).  With the depth hoar data analyzed as a 

whole, distance from the edge, distance from the windward edge, and the degree of wind 

sheltering generally fit the data best (Table 18). 

 Near-surface layers more frequently relate to a wider set of parameters, but the 

ones that describe the interactions with wind appear most frequently in the models.  

These include distance from the edge or windward edge, degree of exposure, the wind-

sheltering index, and relative elevation.  Profile curvature and slope angle are also 

commonly important because of their association with sluffing.  The east-west aspect 

parameter can also be important when the other wind-related parameters are inadequate 

(Tables 26 and 32).  

 Depth hoar PTLs are generally more challenging to model with terrain 

parameters.  Near-surface layers are related to a wider range of parameters and have 

improved predictability (e.g., Fig. 47).  Near-surface layers are probably easier to predict 

in this study because they are newly formed and the processes driving formation or 

destruction of these layers are strongly controlled by the interaction of specific 
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meteorological conditions with specific terrain parameters.  With the passage of time, 

dynamic and widely varying meteorological conditions repeatedly alter the influences of 

terrain on older layers: they become harder to predict.  Other poorly understood processes 

may enhance the variability of these layers.  Depth hoar layers are more consistently 

predicted by the same parameters because the varying influences of terrain due to 

dynamic meteorological processes “average” out into more common relationships.   

These “averaged” parameters for slow-forming depth hoar layers appear to have weaker 

associations than the faster-forming surface layers that are associated with specific 

meteorological conditions that have specific relationships with terrain parameters.   

Terrain Parameter Influences 
 

 In this section I summarize the general patterns of how each of the terrain 

parameters affected the presence of PTLs for the entire study, and how they relate to the 

various physical processes.  I also point out why some of the parameters are not as 

important in this study. 

 Distance from the edge is most commonly associated with depth hoar PTLs and 

the surface hoar ECT dataset because slab depth is highly related to proximity to the sides 

of couloirs (e.g., Fig. 37b).  Distance from the edge is also associated with the presence 

of depth hoar.  In relatively deeper snowpacks, the edges of couloirs are more likely to 

have depth hoar development because of the shallow snowpacks overlying rock and talus, 

whereas depth hoar formation is inhibited at greater distances from the edge due to 

deeper snow depths (e.g., Figs. 44 and 45).  This is consistent with the findings of Arons 

et al. (1998) and Birkeland et al. (1995) who noted depth hoar growth and weaker snow



 
 

Table 33.  Spearman rank-order correlation coefficients for terrain parameters from the entire dataset of 21 couloirs and 1662 

measurements.  All correlations greater than 0.048 or less than    -0.048 are significant at a 95% confidence level, indicated by bold 

font and green shading. 

  rel.elev slope EW.aspect NS.aspect prof plan rel.solar wind expo edge rel.view wind.edge 

rel.elev 1.000 0.204 -0.015 -0.010 0.121 -0.018 0.179 -0.061 -0.068 -0.137 -0.051 -0.138 

slope 0.204 1.000 0.390 -0.323 0.219 -0.043 -0.210 -0.494 -0.160 -0.356 -0.288 -0.334 

EW.asp -0.015 0.390 1.000 -0.391 0.138 -0.016 -0.059 -0.791 -0.070 -0.150 -0.334 -0.499 

NS.asp -0.010 -0.323 -0.391 1.000 -0.154 0.015 -0.112 0.210 0.058 0.209 0.034 0.226 

prof 0.121 0.219 0.138 -0.154 1.000 -0.072 -0.109 -0.276 -0.166 0.010 -0.138 -0.055 

plan -0.018 -0.043 -0.016 0.015 -0.072 1.000 0.066 0.170 0.755 0.001 0.140 0.027 

rel.solar 0.179 -0.210 -0.059 -0.112 -0.109 0.066 1.000 0.111 0.113 0.031 0.215 0.027 

wind -0.061 -0.494 -0.791 0.210 -0.276 0.170 0.111 1.000 0.297 0.123 0.455 0.412 

expo -0.068 -0.160 -0.070 0.058 -0.166 0.755 0.113 0.297 1.000 -0.016 0.240 0.080 

edge -0.137 -0.356 -0.150 0.209 0.010 0.001 0.031 0.123 -0.016 1.000 -0.047 0.456 

rel.view -0.051 -0.288 -0.334 0.034 -0.138 0.140 0.215 0.455 0.240 -0.047 1.000 0.282 

wind.edge -0.138 -0.334 -0.499 0.226 -0.055 0.027 0.027 0.412 0.080 0.456 0.282 1.000 

1
5
0
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near rock outcrops or shallowly buried rocks. The interplay of slab depth and faceting 

near the sides of couloirs combine to form a general “sweet spot” for depth hoar PTLs 

around one meter from the edge of couloirs (e.g., Fig. 45).  Proximity to the edge also can 

enhance warming on more sunlit aspects or affect the amount of wind scouring.  This can 

have the affect of strengthening snow to prevent depth hoar or protecting or destroying 

near surface layers.  Distance from the windward edge has similar associations as 

distance from edge (Table 33), but it is more appropriate where the physical processes 

favor one side or the other in wind-affected terrain.   

 The degree of wind sheltering is highly important in the many of the individual 

couloirs and group models for all weak layer types.  Its association with PTLs varies, 

depending on whether it is describing the process of threatening slab development (e.g, 

Fig. 37d), loading of deep and stable snowpacks, or protection of weak layers from wind 

scouring and erosion (e.g., Fig. 49).  The importance of the wind-sheltering index is 

consistent with the work of Gleason (1996), who found a “wind factor” was one of four 

most influential terrain parameters associated with natural avalanche release on Lone 

Mountain.  My wind index is strongly correlated with EW.aspect (Table 33).  The 

east/west component of aspect essentially describes the aspect as it relates to winds that 

typically prevail from the west, which is more comparable to Gleason‟s “wind factor.”  

Including a similar wind-related parameter that modifies wind direction based on recent 

winds or storm events would likely improve modeling success, especially for near-

surface weak layers. 
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 Terrain exposure and plan curvature also relate to influences from wind.  

Exposure and plan curvature are highly correlated parameters (Table 33), but exposure 

appears important more frequently in the individual modeling and groupwise modeling.  

As with the wind index, how exposure relates to PTLs depends on numerous other 

variables (e.g., Figs. 43 and 44).  Exposure has an advantage over the wind index in that 

it indicates how sheltered or exposed a cell is independent of the prevailing wind 

direction, so it may be more important in environments with highly variable wind 

directions.  This could explain its importance for the Upper A to Z chutes and the 

Headwaters group.  Exposure is also associated with warming and strengthening of snow 

on southerly aspects because more exposed locations are closer to low albedo rocks that 

readily absorb solar radiation.    

 At the individual couloir level, relative elevation within the couloir is the single 

most frequently differing and highly important parameter, supported by all models and 

statistical tests (Tables 10 and 11).   The relationships are frequently opposing between 

couloirs, so it appears unimportant when couloirs are grouped together (e.g. Figs. 22 and 

37a).  However, the individual couloir results show that consideration of relative 

elevation is critical for predicting PTLs.  Elevation is also documented by Gleason (1996) 

as one of the four most important parameters for natural avalanches on Lone Mountain.  

Profile curvature can be correlated with relative elevation (Table 33), but is frequently 

less important.  However, because profile curvature relates to specific physical processes 

such as sluffing or wind scouring, it is a more important parameter in some cases. 
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 Slope angles above approximately 46
o
 in the Upper A to Zs and 43

o
 in the 

Headwaters are associated with fewer depth hoar PTLs (e.g., Fig. 43).  This can be 

attributed to snow sluffing which prevents the build-up of slabs (Table 17).  On Jack 

Creek couloir, sluffing destroyed surface hoar PTLs on slopes steeper than 43
o
 (Table 

31).  These results are similar to those found by Gleason (1996), who cites slopes steeper 

than 43
o
 on Lone Mountain are associated with fewer natural slab avalanches. 

 Relative solar radiation only appears important in the Upper A to Z chutes and a 

select few other individual couloirs (Table 11 and Table 18).  Other than the Upper A to 

Zs, the rest of this dataset is primarily north-facing, so solar radiation would likely have 

higher importance if more southerly aspects were studied.  In the absence of a major 

shadowing obstruction, relative solar radiation derived from Solar Analyst in ArcMap is 

essentially a combination of aspect and slope angle as it relates to seasonally changing 

sun azimuths and angles in the sky.  By changing the solar radiation to a relative measure 

on a scale from 1 to 100, I exaggerate what is otherwise a minimal difference between 

cells during the winter months on northerly slopes.   I suspect that any relationships 

between relative solar radiation and PTLs on north facing slopes in this study is a 

byproduct of its correlation with slope and aspect, especially as aspect relates to wind 

effects (Table 33).   

 Relative viewshed appears to be of limited importance relative to other 

parameters.  While I hypothesize that a parameter relating to coarse scale wind patterns is 

important, as illustrated with Lone Lake Cirque, relative viewshed is inadequate in 

characterizing these patterns for most couloirs.  In the process of creating the parameter, 



154 
 

selecting the length of the ridge to use as the viewing platform seemed arbitrary, so I 

attempted to remove this guesswork by implementing the 30
o
 search width (Fig. 15).  The 

length of the viewing platform varied tremendously due to differing lengths of couloirs, 

different terrain geometry, or different proximities of couloirs to the major windward 

ridgeline.  Depending on the couloir, relative viewshed often lacked continuity as a 

variable, with only zero, one, or two discrete values for slopes that were directly below 

the major windward ridgeline and out of view.  Further work could attempt to model a 

large scale wind process but with an improved parameter, and it could also incorporate a 

drift indicator, as in Winstral et al. (2002).   

 The two aspect parameters do not describe any physical processes that are not 

also modeled by other parameters; thus I am not surprised at their relative lack of 

importance in most of the models.  Several studies cite aspect as an important terrain 

parameter in weak layer development (e.g., Cooperstein, 2008).  Aspect itself is not 

driving the process, but aspect relative to the sun‟s position or to the wind‟s direction is 

what drives the processes.  I designed a wind index, relative viewshed, and relative solar 

radiation to account for these processes. The use of aspect in these models is either as an 

indicator variable distinguishing between couloir groups, as with the full depth hoar 

dataset (Table 18),  or to make up for inadequate wind parameters, as with the Lone Lake 

Cirque depth hoar layer, North Summit facet layer, or the Granite Canyon surface hoar 

layers. (Figs. 41 and 50; Tables 18, 27, and 32).   

 The one meter DEM derived from LiDAR data allowed for characterization of 

complex terrain that would normally not be possible over such an extensive study area.  
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The chutes and couloirs of this study are highly variable; the one meter resolution 

enabled fine scale features to be incorporated into the terrain parameters used in this 

study.  This is especially important for parameters relating to wind exposure and 

sheltering, such as the wind index and exposure index.  However, some of these 

parameters would be just as practical with a 10 m DEM, a resolution that is readily 

available for many mountainous regions in the United States.  Distance from the edge or 

windward edge of the couloir do not require an elevation model, so long as the 

boundaries of the couloir are mapped with a GPS or can be digitized with an 

orthophotograph.  In this study, DEM resolution was reduced to 10 m for profile 

curvature because it allowed identification of major rollovers and aprons.  Certainly the 

other parameters derived at a coarser scale could still be useful, and in some cases, may 

even improve modeling ability if larger terrain features are controlling the physical 

processes.  The usefulness of coarser scale terrain parameters for modeling was not tested 

in this study but would be worthy of future analysis. 

 In summary, fine scale parameters that relate to the physical processes of wind 

scouring, wind protection, and wind-loading are most important for predicting PTLs for 

couloirs in the complex alpine terrain used in this study.  The strong importance of wind-

related parameters in alpine terrain are in accordance with previous snow depth modeling 

studies that cite wind as most influential, such as Erickson et al. (2005) and Wirz et al. 

(2011).  Parameters relating to other physical processes such as sluffing or solar effects 

are also related to PTLs in some cases, but they are not as frequently important for these 

couloirs. 
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Modeling Success 
 

 The success of individual and group modeling of PTLs is encouraging, especially 

because the parameters chosen in most of the models logically relate to physical 

processes.  However, they do not account for all of the variability in the PTL 

observations.  For depth hoar PTLs, success rates for individual couloirs are typically 

between 60% and 70% for both of the robust models (Table 11).  Near-surface facet 

models average around 85% (Table 20).  Some of the unexplained variability is attributed 

to error inherent in the study design (See page 162), but clearly these terrain parameters 

are unable to account for all of the complex processes involved in PTL spatial variability.   

  In the Random Forest models, the greatest decrease in success by removal of a 

single parameter is around 10%, and for groupwise modeling, most of the important 

parameters have mean decreases in accuracy between 1% to 3% (e.g., Table 18).  This 

implies that collectively incorporating all available terrain parameters into the decision-

making process will lead to the most successful decisions in avalanche terrain.  For 

example, in the case of Upper AZ1, where rel.elev is clearly a very strong parameter, if 

you relied on a complete understanding of how relative elevation interacts with depth 

hoar PTLs for that slope, you would be capable of a 70% success rate (using the logistic 

model structure).  However, if you include all of the important terrain parameters, the 

success rate increases to 87% (Table 11).  This emphasizes the importance of 

incorporating the full spectrum of all of the slope scale terrain parameters and their 

interactions into decision making.  This example from Upper AZ1 is an exceptionally 

well modeled layer, but it still leaves unaccounted variability.  That being said, equipped 

with knowledge of how the large scale and meteorological processes are interacting with 
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the slope-scale terrain parameters, one can significantly improve their chances of finding 

a PTL with the appropriate slope-scale parameters, which allows for educated decision 

making.  Furthermore, the couloirs in which I had a better understanding of the primary 

physical processes guiding variability, and the couloirs in which I was able to reasonably 

predict weak layer presence as I sampled across the slope are the ones that generally have 

the highest model success rates.  These findings support the common practice by 

practitioners of probing to establish and extrapolate slope-scale patterns when assessing 

the variability of buried weak layers.   

 All of the other studies that have attempted to predict weak layer or stability 

characteristics from a terrain-based model have had similar unexplained variability in 

their modeling results because of the complexity of the snow and avalanche regime.  For 

example, Shea and Jamieson (2010) cross validated their surface hoar model on a very 

similar and specific slope with 60% success rates.  This is comparable to the 59% average 

success rate that Upper AZ3 has when cross-validating against the other Upper A to Zs 

for both depth hoar and facets (Table 22).  Schweizer and Kronholm (2007) document an 

82% success rate and 60% miss rate for a terrain-based logistic model fit to the presence 

of surface hoar for one region.  Their rate is lower than the 92% success rate for Jack 

Creek Surface hoar layer and the 88% average success rates for the presence/absence of 

near-surface facets.  This improvement may be due to different scales or the higher 

resolution of terrain parameters used for this study.  Birkeland et al. (1995) report a 0.15 

r
2
 value for snow resistance modeled by snow depth and the presence of rocks on a 

somewhat complex slope.  Birkeland (2001) explained 20% to 50% of the variability in 
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stability response variables with terrain parameters.  These latter two are different 

measures of variability on different observed responses, but also demonstrate the high 

variability that is typical of spatial variability research in snow strength and stability.    

 Correlations between the parameters included in this model and total snow depth 

are comparable to results reported in Wirz et al. (2011) from a similar scale and similar 

resolution study of snow depth on a steep rock face.  In their results, the maximum 

absolute values of Pearson correlation coefficients are: slope angle= 0.13 and 

curvature=0.21.   For this study, Spearman correlations are much higher for some of the 

individual couloirs, but for the entire dataset, I get comparable correlations of: slope 

angle=0.27, plan curvature=0.09, and profile curvature=0.11 (Fig. 53).  Correlations from 

wind, expo, and rel.view fall between these values.  Comparing edge, which has the 

strongest correlation for this study, is contrived because the location of the edge depends 

on snow depth for many couloirs on Lone Mountain.   

 The two model structures, logistic regression and classification trees, frequently 

return different parameters that describe the same underlying process.  This is inherent in 

the way that the models explain relationships, either linearly or with thresholds.  A good 

example is the depth hoar group for Lone Lake Cirque, where the upper portions of the 

slope have a larger presence of PTLs.  Relative elevation is an obvious parameter that 

describes this relationship. It is easy to draw a line across the two slopes showing where 

this transition occurred (Fig. 41).  The classification tree model does so with a split at that 

hypothetical line.  However, the linear regression explains this relationship with profile 
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Fig. 53.  Spearman rank-order correlation coefficients for the entire dataset of 21 couloirs 

from a sample size of 1662 measurements.  All correlations greater than 0.048 or less 

than -0.048 are significant at a 95% confidence level. 

 

curvature, which better describes the transition linearly (Table 18).  Neither of these 

models is wrong.  Rather, this suggests that no single “best” model is possible with 

statistical modeling, but there are several equally good models.  We can explain the 

physical processes that determine the presence of PTLs using a number of parameter 

combinations and model structures.  This agrees with the work of Birkeland (2001), who 
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found that different terrain parameters were selected for models of similar stability 

responses.   “The differences between the models emphasize the underlying data 

complexity, and some of the difficulties that avalanche scientists face when trying to 

understand and predict avalanches” (Birkeland, 2001).   

 In general, I think that Random Forest models have advantages over logistic 

regression models for exploring the importance of parameters, but logistic regression 

models have improved modeling success.  For the Random Forest model, my importance 

measures test the loss in predictive ability when a parameter is removed from the model.  

Thus, highly correlated terms that are both important, such as profile curvature and 

relative elevation, as described in the previous paragraph, will both be identified as 

important.   Parameters in logistic regression are removed during the AICc reduction if 

they are highly correlated to other parameters with stronger relationships, and my 

measure of importance describes how frequently and in how good of models a parameter 

appears.  The results can be misleading because a highly important parameter may never 

show up in the models if it is correlated to another parameter that describes the 

relationship better linearly.  In the example from Lone Lake Cirque, relative elevation is 

completely removed from importance because profile is a better linear parameter, even 

though relative elevation is clearly associated with PTLs (Fig. 41).  Logistic regression 

has several advantages such as the ability to better model linear relationships, and it 

predicts probabilities rather than absolute classifications.     

 On average, the logistic regression models have higher success rates that the 

Random Forest models (e.g., Table 20).  There are several possible explanations: (1) 
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Terrain parameters associate with PTLs more often in linear form rather than thresholds. 

However, this is not always the case, as exemplified by Lone Lake Cirque where the 

Random Forest has a higher success rate using threshold relationships (Table 14).  (2) I 

included six additional quadratic terms for logistic modeling, improving the modeling 

potential.  (3) The model reduction techniques vary between the two models, and 

Random Forest models would suffer a loss of predictability if a single parameter is far 

superior in comparison to others because that parameter would be withheld during some 

of the boot-strapping iterations.  (4) The success rates are calculated differently for the 

two model forms.  

 The pruned classification tree may overfit the data with very specific relationships 

that may not be meaningful, despite cross-validation processes aimed at refining the tree 

to a more robust construction.  This is evident by constantly higher success rates than the 

more robust Random Forest model (Table 20), as well as lower nodes in the complex 

trees describing relationships that are not well understood.  Several snow science studies 

have used overfit trees to describe intricate relationships in the data that are not otherwise 

apparent (e.g., Davis et al., 1999).  This application could prove useful in discovering 

complex relationships between the snow and terrain for this data, but given the amount of 

uncertainty in data collection in this study, I interpret only the first several nodes of the 

pruned trees and focus on the results from the more robust models for these discussions. 
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Uncertainty 
 

 As with all environmental research, this study is not lacking in uncertainty, 

whether it be the observed input, the observed response, the model simulating the 

response, or the parameters.  

 The first major source of uncertainty is the terrain parameters derived from GIS.  

This includes error introduced from GPS point locations, which is described previously 

on page 37.   LiDAR scanning also contains errors. However, root mean square errors 

(RMSE) typically fall below 15 cm for elevation data acquired from LiDAR (Hopkinson 

et al., 2009).  Another source of uncertainty is resolution induced error from the one 

meter DEM.  Parameters are measured at the resolution of one meter square grids, but the 

scale at which the parameter is actually influencing the snowpack may be finer.  

However, one meter resolution is comparable to, if not better than, what practitioners are 

capable of conceptualizing in the field.  Another simplification is that the two wind 

parameters, the wind index and relative view, are based on prevailing winds averaged 

over the winter season, when in reality, wind patterns are much more complex.   

The second major source of uncertainty is in the observed response: the snowpack 

measurements.  Due to the challenging environment and the field methods applied, snow 

observations are not free of uncertainty.  Snow depth measurement error was introduced 

when the avalanche probe was not held perfectly vertical.  For HS, I estimate average 

error was less than 1 cm.  Identifying the exact depth at which the moving avalanche 

probe punched through a slab into the depth hoar or other weak layer was often difficult.   

For slab thickness measurements (HSlab), I estimate average error was less than 2-3 cm, 

depending on how sharp the contrast between the slab and weak layer was.  Most of the 
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parameters are robust to changes in slab thickness, especially on the order of several 

centimeters, so these errors have minimal influence on the results.  The most challenging 

uncertainty to deal with is the presence/absence of deeply buried weak layers, which is 

critical for establishing the presence of a PTL.  In the field, assistants and I cross-verified 

probing observations with repeated probe holes or hand pits when possible.  Depending 

on the snowpack and couloir being analyzed, I estimated my certainty in identifying the 

presence/absence of the weak layer, which ranged from 85% to 100% (Table 2).  The 

resolution and accuracy of probe penetration could be improved with the use of a digital 

snow micropenetrometer (Schneebeli and Johnson, 1998), but this would come at the cost 

of fewer samples, expensive instrumentation, and working with burdensome equipment 

in hazardous and challenging terrain.   

A major source of uncertainty is the definition of a PTL for depth hoar layers.  

Experts do not agree on the minimum slab thickness required for a PTL, mainly because 

it is dependent on the strength and hardness of the slab, as well as the properties of the 

weak layer below it.  The minimum slab criterion of 15 cm is a conservative estimate 

based on previous research and discussions with avalanche professionals.  I address this 

uncertainty in the statistical analysis by allowing the minimum slab criteria to vary for 

both model types, and results show that most of the important parameters are robust 

against changes in the minimum slab criteria.    

Another assumption is that the presence of a weak layer qualifies it as PTL.  The 

probe measurements or snow surface observations do not  quantify snow stability 

measurements typically associated with avalanche release.  However, my data are simple 
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qualitative measures of change in snow hardness (for deep layers) or grain type (for 

surface layers), and both of these are closely associated with avalanche events 

(McCammon and Schweizer, 2002).  The presence of a weak layer does not necessarily 

indicate instability, but I specifically use the terminology “Potential Trigger Location” 

because the weak layer could become unstable given the right load, and weak layers are 

more commonly associated with instability (Schweizer and Wiesinger, 2001).  

Another source of uncertainty is the model structure and parameters.  Statistical 

models describe processes through strict relationships, such as linear or hierarchal.  It is 

unlikely that complex environmental processes adhere to such simple structures.  I 

accommodate to this complexity by implementing two different model forms, but there 

are numerous potential models, none of which are likely to exactly replicate the true 

environmental process.  Furthermore, the parameters used in each of the models warrant 

uncertainty.  Models could potentially include categorical parameters, cubic parameters, 

two-way or three-way interactions, log-transformed parameters, or any number of 

increasingly complex parameters compared to the simple continuous main effects and 

quadratic terms used for this modeling.  As described previously, I focus on the main 

effects for simpler interpretations and to prevent overfitting of spurious terms.  Given the 

uncertainty in the observations, including numerous complicated terms could compound 

error.   

In summary, uncertainty is present in this study through observed inputs and 

responses and the models describing them, but error and uncertainty is minimized and 

accounted for whenever possible.  Careful cross-verification with shovel or hand pits as 
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well as large sample sizes guarded against erroneous field measurements.  I verified that 

GPS recordings aligned with LiDAR data using reference points and treat the two 

datasets with poor GPS accuracy as outliers.  I incorporated Monte-Carlo techniques to 

account for uncertainty in PTL slab criteria.  I used two different model structures, cross-

validation, multi-model averaging, boot-strapping techniques, and robust model selection 

techniques to optimize the validity of the statistical results.  Utilizing different 

independent approaches that arrived at similar conclusions improved my confidence in 

the results.    

Scope of Inference 
 

 This is an observational study of a sample of couloirs in southwest Montana and 

northwest Wyoming.  Inferences made to larger populations of couloirs outside of the 

sample or different time periods are not statistically supported because the sample is not 

random with regard to location or time.  Therefore, we can only speculate that these 

results can be applied to other couloirs or to other winters.  However, this is the first 

study to show that snow weaknesses and slabs can be related to terrain parameters in this 

type of terrain, and it is encouraging for educated decision making in an unexplored field 

of snow science. 

 Lone Mountain has a very continental snowpack, and it is likely that weak layer 

patterns could vary dramatically in similar terrain for other snow climates, such as 

maritime or intermountain climates.  The inclusion of a different snow climate, the 

Southern Tetons, adds a level of robustness to the results, but it is a small samples size, 
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and as discussed previously, data from two of the couloirs from Teton Pass contain 

numerous sources of error. 

 The scale and type of terrain should also be considered.  We worked in relatively 

small terrain when compared to many complex avalanche chutes or couloirs around the 

world.  Patterns observed here, and especially model coefficients or threshold values, 

need to be carefully considered before extrapolating them to larger or different terrain.  

However, given a similar snow climate and similar type of terrain, I would expect similar 

physical processes are associated with similar terrain parameters. 

 Because sampling on a single couloir disrupts the snow structure for repeated 

measurements, we only observed patterns in a snapshot of time when slope stability was 

good.  The patterns of weak layers likely change throughout the season as different 

meteorological and metamorphic processes interact with the snowpack.   Furthermore, 

data are from two winter seasons only.  Ski patrollers have observed  “sweet spots” where 

avalanches are commonly triggered each season, and Wirz et al. (2011) noted that snow 

depth distributions were similar on a steep rock face over a period of two years.  Thus, 

we could expect to find similar patterns from year to year.  However, Erickson et al. 

(2005) found that the significance of topographic parameters in snow depth prediction in 

one cirque varied over a span of seven years.  Theirs is one of few studies which have 

studied temporal variability of snow as it relates to terrain over such an extensive time 

scale. 
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5. CONCLUSION 
 

Summary 
 

 

 From a group of 21 couloirs in Montana and Wyoming, I examined the 

importance of terrain parameters as they relate to potential trigger locations (PTLs) of 

slab avalanches with exploratory analysis and robust classification tree and logistic 

modeling techniques.   

 The widely varying results from the individual couloir models demonstrate how 

complex and variable the influence of terrain parameters are on the presence of weak 

layers, slabs, and PTLs.  There is a clear message from poor cross validation results from 

couloir to couloir: terrain interacts with the snowpack differently in each couloir, making 

extrapolating results from one couloir to other couloirs challenging and potentially 

misleading.  This is true even for some closely-spaced couloirs.  This does not imply that 

terrain patterns cannot be used to predict PTLs, but that specific thresholds and 

relationships from one slope are unlikely to fit well for other slopes.  Rather, a more 

general understanding of how each slope-scale terrain parameter interacts with the 

snowpack under varying climatic and larger scale terrain inputs enables educated 

decision making.  Results support that more general interactions between terrain and 

PTLs enable predictive success for couloirs in the same headwall or cirque, but to a lesser 

degree. 

 For these data, which were collected in steep alpine terrain, parameters relating to 

the physical processes of wind deposition and scouring appear to be most influential in 

modeling.   Distance from the edge of a couloir, relative elevation in the couloir, the 
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degree of wind sheltering, and the degree of exposure of the terrain are the most 

important parameters associated with PTLs by a number of modeling standards.  Other 

parameters are likely to be equally or more important for different topography or 

different snow climates, such as slope angle and solar radiation.  The specific influences 

from these slope-scale parameters vary depending on the characteristics of the cirque or 

region, prior weather patterns, and seasonal trends.   However, the results of this study 

show that the presence or absence of PTLs can be strongly associated with these 

parameters, with model success rates frequently reaching 80% for near surface layers and 

70% for depth hoar layers.  The practical implications of these findings are that the 

distribution of PTLs in a couloir is likely to vary depending on the influence of the above 

parameters, so careful consideration needs to be given when assessing the stability from a 

single point observation or before extrapolating the results from one couloir to the next.    

 Because of the high spatial variability of PTLs in complex terrain, the best 

strategy to successfully manage or evaluate a steep couloir requires:  

(1)  A complete understanding of how the larger scale terrain and meteorological 

conditions interact with the slope (e.g., prevailing wind and snow patterns, wind 

anomalies, suspect weak layers, general snowpack conditions and history).   

(2)  Expert intuition incorporating an understanding of how these and other important 

slope-scale terrain parameters interact with the snowpack for careful route selection or pit 

or explosive placement.   

(3)  A holistic approach, incorporating all possible information including current 

meteorological conditions, recent avalanche activity, and other signs of instability. 
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Future Work 
 
 

 The success of this study in finding meaningful relationships between terrain and 

potential trigger locations in such highly variable and complex terrain is encouraging for 

future modeling and understanding of the physical processes involved with the snowpack 

development and avalanche formation.  Numerous possibilities exist for future work.  A 

larger sample of couloirs from more diverse snow climates, a more diverse collection of 

weak layers, and data collection at different terrain scales would all expand our 

understanding of the system.  Sampling strategies designed to allow for repeated 

sampling through one season would improve our understanding of how the snowpack 

develops over the course of a winter.  Repeated sampling over numerous seasons could 

characterize how the influences of terrain change from year to year.  Cross-validating the 

modeling results from these couloirs to the same couloirs but in different winters would 

provide interesting insights on how consistent the terrain effects are annually.   

 In addition to improved sampling strategies, more quantifiable techniques could 

increase the usefulness of future studies.  Higher resolution probing methods, such as the 

snow micropenetrometer (Schneebeli and Johnson, 1998), more quantifiable tests relating 

directly to instability, such as the ECT (Simenhois and Birkeland, 2009), or more 

exhaustive coverage of weak layers, such as with FMCW radar (Marshall and Koh, 2008) 

could decrease the uncertainty of these results.    Redesigning inadequate terrain 

parameters, such as relative viewshed, or including the same terrain parameters but at 

varying scales, as done by Winstral et al. (2002), could improve our ability to describe 

more processes at different scales.   A more complex statistical model, which 
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incorporates hierarchal and linear relationships at different scales from slope to mountain 

range, could be designed for predictive purposes.  Future modeling efforts could also 

include meteorological conditions.  This research provides solid progress toward 

understanding the complex processes occurring in steep avalanche terrain, improving our 

understanding of the relationship between terrain and optimal locations for snowpits or 

explosive placements.  This, in turn, has the potential to improve safety in complex 

avalanche terrain for both recreationists and avalanche professionals.   
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APPENDIX A  
 
 

PTLS MAPPED ON SHADED RELIEF 
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Depth Hoar PTLs 
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Facet PTLs 
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Surface Hoar PTLs 
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APPENDIX B 
 

 GROUPWISE MODELING STATISTICAL OUTPUTS 
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 Appendix B contains the key figures and tables used for groupwise statistical 

analysis.  For each group, I include: (1) Probability distribution functions for PTL and 

non-PTL observations for important parameters. (2) The pruned classification tree.  (3) 

The Random Forest parameter importance for fixed PTLs (15 cm slabs) and uncertain 

PTLs, where the slab ranged from 0 cm to 60 cm.  (4) Plots of parameter importance 

versus slab thickness for Random Forest modeling.  (5)  Logistic model parameter 

importance for three slab thicknesses.  (6)  Coefficients, odds ratios, and confidence 

intervals for the final logistic model.   

The Gullies (Depth Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 0.92605 0.29921 1.55289 2.52452 4.7251 1.3488 1 

prof 0.07176 0.02347 0.12005 1.0744 1.1276 1.0237 1 

wind^2 -0.01052 -0.03274 0.0117 0.98954 1.0118 0.9678 0.849 

expo -0.28746 -0.81965 0.24472 0.75016 1.2773 0.4406 0.592 

wind 0.05278 -0.1388 0.24436 1.0542 1.2768 0.8704 0.225 

plan -0.00083 -0.00366 0.00199 0.99917 1.002 0.9963 0.186 

rel.elev^2 0.01922 -0.06704 0.10548 1.0194 1.1112 0.9352 0.135 

edge 0.00042 -0.00224 0.00309 1.00042 1.0031 0.9978 0.059 
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Upper A to Zs (Depth Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 1.25286 0.7861 1.71962 3.50033 5.5824 2.1948 1 

expo -0.61616 -0.94528 -0.28704 0.54002 0.7505 0.3886 1 

rel.view -0.31743 -0.55246 -0.08239 0.72802 0.9209 0.5755 0.961 

slope^2 -0.00022 -0.00044 0 0.99978 1 0.9996 0.843 

wind^2 -0.00469 -0.01121 0.00183 0.99532 1.0018 0.9889 0.768 

rel.solar 0.11061 -0.20292 0.42413 1.11696 1.5283 0.8163 0.343 

rel.elev -0.07906 -0.32069 0.16257 0.92398 1.1765 0.7256 0.277 

plan 0.00097 -0.0022 0.00413 1.00097 1.0041 0.9978 0.257 

rel.elev^2 -0.05418 -0.23246 0.12411 0.94727 1.1321 0.7926 0.225 

wind.edge -0.0047 -0.02097 0.01157 0.99531 1.0116 0.9792 0.178 

slope -0.00319 -0.0142 0.00783 0.99682 1.0079 0.9859 0.157 

edge -0.003 -0.01436 0.00835 0.997 1.0084 0.9857 0.122 

edge^2 -0.00024 -0.0012 0.00071 0.99976 1.0007 0.9988 0.098 

wind.edge^2 0.00014 -0.00041 0.0007 1.00014 1.0007 0.9996 0.054 

wind 0.00232 -0.0067 0.01135 1.00232 1.0114 0.9933 0.05 

prof^2 -0.00003 -0.00018 0.00012 0.99997 1.0001 0.9998 0.037 
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Teton Pass (Depth Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 0.44486 0.25856 0.63116 1.56027 1.8798 1.2951 1 

rel.elev^2 0.01658 -0.05249 0.08566 1.01672 1.0894 0.9489 0.097 

wind.edge^2 -0.00002 -0.00011 0.00007 0.99998 1.0001 0.9999 0.091 

rel.elev 0.01357 -0.04588 0.07302 1.01366 1.0757 0.9552 0.089 

prof^2 -0.00021 -0.00123 0.00082 0.99979 1.0008 0.9988 0.079 

prof -0.00101 -0.00651 0.00449 0.99899 1.0045 0.9935 0.076 

wind -0.00115 -0.00759 0.00529 0.99885 1.0053 0.9924 0.075 

slope 0.00031 -0.00156 0.00218 1.00031 1.0022 0.9984 0.074 

rel.view -0.00502 -0.03454 0.0245 0.99499 1.0248 0.966 0.074 

expo 0.00759 -0.03675 0.05194 1.00762 1.0533 0.9639 0.074 

slope^2 0 -0.00002 0.00002 1 1 1 0.073 
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Headwaters (Depth Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 0.34941 0.17457 0.52424 1.41822 1.6892 1.1907 1 

edge 0.01763 -0.00653 0.04179 1.01779 1.0427 0.9935 0.839 

expo 0.01994 -0.05351 0.0934 1.02014 1.0979 0.9479 0.143 

wind^2 -0.0002 -0.00105 0.00065 0.9998 1.0006 0.9989 0.089 

prof^2 -0.00039 -0.00195 0.00117 0.99961 1.0012 0.998 0.07 

edge^2 -0.00025 -0.00125 0.00075 0.99975 1.0008 0.9988 0.067 

plan 0.00013 -0.00039 0.00064 1.00013 1.0006 0.9996 0.066 

slope -0.00047 -0.00237 0.00144 0.99953 1.0014 0.9976 0.065 

wind 0.00092 -0.00289 0.00472 1.00092 1.0047 0.9971 0.061 

prof -0.00102 -0.00533 0.00329 0.99898 1.0033 0.9947 0.058 

slope^2 0 -0.00002 0.00001 1 1 1 0.052 

rel.elev 0.00396 -0.01403 0.02194 1.00396 1.0222 0.9861 0.049 

rel.view 0.00155 -0.00711 0.01021 1.00155 1.0103 0.9929 0.041 

rel.solar -0.00167 -0.0118 0.00846 0.99833 1.0085 0.9883 0.04 

wind.edge^2 0 -0.00003 0.00002 1 1 1 0.04 

wind.edge -0.00005 -0.00046 0.00037 0.99995 1.0004 0.9995 0.039 
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North Summit (Depth Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL Odds 

Ratio Importance 

Intercept 0.35417 0.06451 0.64382 1.42499 1.9037 1.0666 1 

edge^2 -0.00216 -0.00375 -0.00056 0.99784 0.9994 0.9963 0.956 

wind.edge^2 0.00028 -0.00029 0.00086 1.00028 1.0009 0.9997 0.59 

slope^2 0.00001 -0.00004 0.00007 1.00001 1.0001 1 0.158 

slope 0.00104 -0.00297 0.00505 1.00104 1.0051 0.997 0.109 

rel.solar -0.0247 -0.12061 0.07121 0.9756 1.0738 0.8864 0.106 

wind.edge 0.00106 -0.00292 0.00503 1.00106 1.005 0.9971 0.098 

wind^2 -0.00018 -0.00101 0.00064 0.99982 1.0006 0.999 0.091 

prof^2 -0.00012 -0.00068 0.00044 0.99988 1.0004 0.9993 0.082 

wind 0.00274 -0.00788 0.01335 1.00274 1.0134 0.9922 0.079 

expo 0.01223 -0.03765 0.06211 1.01231 1.0641 0.9631 0.064 

plan 0.00014 -0.00045 0.00074 1.00014 1.0007 0.9995 0.058 

edge -0.00114 -0.00559 0.0033 0.99886 1.0033 0.9944 0.044 

prof -0.0004 -0.00242 0.00162 0.9996 1.0016 0.9976 0.042 
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Lone Lake Cirque (Depth Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 0.30831 0.03299 0.58363 1.36112 1.7925 1.0335 1 

prof 0.06342 -0.02119 0.14803 1.06548 1.1596 0.979 0.808 

slope^2 0.00003 -0.00009 0.00015 1.00003 1.0001 0.9999 0.148 

wind.edge^2 -0.00011 -0.00051 0.00029 0.99989 1.0003 0.9995 0.141 

wind.edge -0.0017 -0.00813 0.00473 0.9983 1.0047 0.9919 0.118 

rel.elev 0.01825 -0.05555 0.09205 1.01842 1.0964 0.946 0.092 

rel.elev^2 0.01177 -0.03909 0.06264 1.01184 1.0646 0.9617 0.077 

edge -0.00109 -0.00612 0.00394 0.99891 1.0039 0.9939 0.07 

rel.solar 0.0091 -0.03557 0.05378 1.00915 1.0553 0.9651 0.067 
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All Depth Hoar Samples/Lone Mountain 
 
 

*The output here is for all depth hoar samples.  It is very similar to the Lone Mountain 

samples (the two Teton Pass couloirs are excluded, in this case), so I did not include both. 
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Parameter Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper CL 

Odds 

Ratio 

Lower 

CL Odds 

Ratio Importance 

Intercept 0.34238 0.25471 0.43006 1.40830 1.53740 1.29010 1.000 

edge 0.04884 0.02160 0.07609 1.05006 1.07910 1.02180 1.000 

edge^2 -0.00443 -0.00689 -0.00198 0.99558 0.99800 0.99310 1.000 

wind^2 -0.00020 -0.00096 0.00055 0.99980 1.00060 0.99900 0.138 

rel.view -0.00471 -0.02392 0.01449 0.99530 1.01460 0.97640 0.095 

rel.elev^2 0.00241 -0.00933 0.01415 1.00242 1.01430 0.99070 0.072 

wind 0.00027 -0.00108 0.00163 1.00027 1.00160 0.99890 0.071 

prof^2 -0.00004 -0.00027 0.00018 0.99996 1.00020 0.99970 0.070 

slope^2 0.00000 -0.00001 0.00001 1.00000 1.00000 1.00000 0.068 

slope -0.00009 -0.00060 0.00043 0.99991 1.00040 0.99940 0.066 

wind.edge^2 0.00000 -0.00002 0.00002 1.00000 1.00000 1.00000 0.065 

wind.edge -0.00007 -0.00050 0.00037 0.99993 1.00040 0.99950 0.064 

prof 0.00009 -0.00082 0.00100 1.00009 1.00100 0.99920 0.062 

expo -0.00039 -0.00719 0.00640 0.99961 1.00640 0.99280 0.061 
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Upper A to Zs (Near-Surface Facets) 
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  Estimates Lower CL Upper CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 0.93684 0.71237 1.16131 2.55191 3.1941 2.0388 1 

expo -0.99988 -1.36579 -0.63396 0.36792 0.5305 0.2552 1 

rel.elev -0.32672 -0.55218 -0.10127 0.72128 0.9037 0.5757 1 

wind^2 -0.01306 -0.01704 -0.00908 0.98702 0.991 0.9831 1 

plan 0.00343 -0.00114 0.008 1.00344 1.008 0.9989 0.837 

wind.edge^2 -0.00069 -0.00158 0.00021 0.99931 1.0002 0.9984 0.831 

prof -0.00258 -0.0119 0.00674 0.99742 1.0068 0.9882 0.194 

edge 0.00309 -0.0083 0.01447 1.00309 1.0146 0.9917 0.176 

wind.edge -0.00221 -0.01133 0.0069 0.99779 1.0069 0.9887 0.152 

slope -0.00073 -0.00375 0.0023 0.99927 1.0023 0.9963 0.089 

prof^2 -0.00012 -0.00061 0.00037 0.99988 1.0004 0.9994 0.087 

rel.elev^2 0.01404 -0.06196 0.09004 1.01414 1.0942 0.9399 0.066 

 

 

North Summit/ Lone Lake (Near-Surface Facets) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 0.37127 0.21145 0.53109 1.44958 1.7008 1.2355 1 

wind.edge -0.02287 -0.03597 -0.00977 0.97739 0.9903 0.9647 1 

rel.solar 0.09977 -0.18466 0.38419 1.10491 1.4684 0.8314 0.344 

rel.view 0.04383 -0.10208 0.18974 1.0448 1.2089 0.903 0.279 

expo -0.05859 -0.25078 0.13359 0.94309 1.1429 0.7782 0.24 

plan -0.00013 -0.00071 0.00045 0.99987 1.0005 0.9993 0.074 

rel.elev^2 0.00578 -0.0216 0.03315 1.00579 1.0337 0.9786 0.071 

rel.elev 0.006 -0.02234 0.03433 1.00601 1.0349 0.9779 0.071 

prof -0.0008 -0.00471 0.00311 0.9992 1.0031 0.9953 0.069 
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Granite Canyon (Surface Hoar) 
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  Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper 

CL 

Odds 

Ratio 

Lower 

CL 

Odds 

Ratio Importance 

Intercept 1.25459 0.63266 1.87652 3.50641 6.5308 1.8826 1 

rel.elev -0.47196 -1.10701 0.16309 0.62378 1.1771 0.3305 0.789 

edge -0.04533 -0.10544 0.01479 0.95569 1.0149 0.8999 0.77 

wind.edge -0.02714 -0.12219 0.06792 0.97323 1.0703 0.885 0.177 

wind.edge^2 0.00117 -0.00303 0.00537 1.00117 1.0054 0.997 0.17 

edge^2 -0.0002 -0.00174 0.00133 0.9998 1.0013 0.9983 0.136 

wind^2 0.00536 -0.01612 0.02685 1.00538 1.0272 0.984 0.122 

rel.elev^2 -0.02305 -0.21074 0.16464 0.97721 1.179 0.81 0.117 

slope -0.00065 -0.00524 0.00395 0.99935 1.004 0.9948 0.111 

wind -0.01506 -0.07527 0.04515 0.98505 1.0462 0.9275 0.097 

rel.solar 0.01021 -0.04733 0.06776 1.01026 1.0701 0.9538 0.097 

prof^2 0.00081 -0.00261 0.00423 1.00081 1.0042 0.9974 0.094 

slope^2 -0.00001 -0.00008 0.00005 0.99999 1.0001 0.9999 0.09 

expo -0.03161 -0.1616 0.09838 0.96888 1.1034 0.8508 0.088 

prof 0.00542 -0.02128 0.03212 1.00543 1.0326 0.9789 0.072 

plan -0.00002 -0.00029 0.00024 0.99998 1.0002 0.9997 0.038 
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Jack Creek (Surface Hoar) 
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Estimates 

Lower 

CL 

Upper 

CL 

Odds 

Ratio 

Upper CL 

Odds 

Ratio 

Lower CL 

Odds 

Ratio Importance 

Intercept -28.0749 -65.7923 9.6425 0.000000 1.541E+04 0.00000 1 

edge 1.64693 -0.59869 3.89255 5.191040 49.03590 0.54950 1 

rel.view -5.35346 -10.287 -0.41992 0.004730 0.65710 0.00000 1 

rel.elev 103.0932 37.05732 169.1291 5.926E+44 2.830E+73 1.241E+16 1 

rel.elev^2 -96.775 -155.882 -37.6675 0.000000 0.00000 0.00000 1 

wind.edge 0.47467 0.10713 0.84221 1.607490 2.32150 1.11310 1 

slope^2 -0.00638 -0.02399 0.01122 0.993640 1.01130 0.97630 0.81 

prof^2 -0.08401 -0.26715 0.09914 0.919430 1.10420 0.76560 0.574 

edge^2 -0.10815 -0.41009 0.1938 0.897500 1.21380 0.66360 0.461 

prof 0.29019 -0.46322 1.0436 1.336690 2.83940 0.62930 0.426 

slope 0.26007 -1.20673 1.72687 1.297020 5.62300 0.29920 0.365 

wind -0.02505 -0.15358 0.10349 0.975260 1.10900 0.85760 0.083 
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APPENDIX C 

SUPPLEMENTARY 3D MAPS 
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 Appendix C contains a selection of three-dimensional maps to supplement text 

and maps in the main document.  The graphics were created in ArcScene. 

Terrain Parameter Grids for Lone Lake Couloir 
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Main Document Supplementary Figures 

 The following are 3D maps re-illustrating a selection of figures presented in the 

main body of this document to aid in visualization.  Below each figure in this appendix is 

a caption noting which figure(s) in the document the graphic refers to.   

 

 

Fig. 37c 
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Fig. 37b 



238 
 

 

Fig. 41 
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Figs. 22 and 43 
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Fig. 44 
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Fig. 45 
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Fig. 49 

 

Fig.  49 
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Fig. 50 
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Fig. 52 
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Fig. 52 


