
Proceedings of the 2014 International Snow Science Workshop, Banff, Alberta 

METEOROLOGICAL VARIABLES ASSOCIATED WITH DEEP SLAB AVALANCHES ON PERSISTENT 
WEAK LAYERS 

Alex Marienthal
1,2,3 

*, Jordy Hendrikx
1
, Karl Birkeland

4,1
, Kathryn M. Irvine

5 

 

1
 Snow and Avalanche Laboratory, Montana State University, Bozeman, MT, USA. 

2
 Bridger Bowl Ski Patrol, Bozeman, MT, USA. 

3 
Friends of the Gallatin National Forest Avalanche Center, Bozeman, MT, USA. 

4
 USDA Forest Service National Avalanche Center, Bozeman, MT, USA. 

5
 U.S. Geological Survey, Northern Rocky Mountain Science Center. 

 

ABSTRACT: Deep slab avalanches are a particularly challenging avalanche forecasting problem. These 
avalanches are typically difficult to trigger, yet when they release they tend to propagate far and can re-
sult in large and destructive avalanches. For this work we define deep slab avalanches as those that fail 
on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1

st
. We utilized a 44-

year record of avalanche control and meteorological data from Bridger Bowl Ski Area in southwest Mon-
tana to test the usefulness of meteorological variables for predicting seasons with deep slab avalanches. 
While previous studies often exclusively use data from the days preceding deep slab cycles, we include 
meteorological metrics over the early months of the season when persistent weak layers form. We used 
classification trees for our analyses. Our results showed that seasons with avalanches on deep persistent 
weak layers typically had drier early months, and often had maximum snow depth greater than 88cm in 
November, which provided ideal conditions for persistent weak layer development. This paper provides 
insights for ski patrollers, guides, and avalanche forecasters who seek to understand the seasonal condi-
tions that are conducive to deep slab avalanches on persistent weak layers later in the season. 
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1. INTRODUCTION 

Forecasting deep slab avalanches on persistent 
weak layers becomes an increasingly challenging 
task as the winter snowpack deepens. Avalanches 
failing on a particular weak layer become less 
common the longer the weak layer is buried, but 
when avalanches do occur they are typically larger 
and more destructive than other avalanches 
(Comey and McCollister, 2008; Tracz, 2012). In 
contrast to recently buried persistent weak layers 
and new snow instabilities, deep slab avalanches 
are seldom accompanied by obvious evidence to 
suggest their impending collapse (LaChapelle and 
Atwater, 1961). After weak layers form they en-
dure a balancing act between weakening due to 
strong temperature gradients and strengthening 
due to the addition of overburden pressure from 
snow loading (Bradley and Bowles, 1967). Deep 
slab avalanches are commonly triggered during 
and after storms, but differentiating between 
storms that will trigger a deep slab avalanche and 

storms that will not is difficult (e.g., Conlan et al., 
2014). Various studies have explored the differ-
ence in meteorological conditions prior to days 
with deep slab avalanches compared to conditions 
prior to days without deep slab avalanches (e.g., 
Jamieson et al., 2001; Conlan et al., 2014), but 
few have considered the meteorological conditions 
during weak layer formation over the early months 
of seasons with deep slab avalanches compared 
to meteorological conditions during seasons with-
out deep slab avalanches. In this paper we exam-
ine the meteorological conditions during the time 
of weak layer formation each season by summa-
rizing meteorological observations from the 
months of November, December, and January. 

In a study by Davis et al. (1999) meteorological 
conditions during weak layer formation were con-
sidered by including the starting snow depth of the 
year in models created to forecast avalanche days 
and size. They found starting snow depth of the 
year to be significant in explaining the daily sum of 
avalanche size and maximum avalanche size. 
Jamieson et al. (2001) compared meteorological 
conditions during persistent weak layer formation 
between two regions that had the same weak lay-
er develop, but only one region had extensive ava-
lanche activity on this layer. They suggest that 
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persistent weak layer formation can be predicted 
based on temperature, snowfall, and precipitation 
measurements from a suitable weather station. 

Researchers have used a variety of definitions for 
deep slab avalanches. Jamieson et al. (2001) fo-
cused on avalanches that failed on a facet-crust 
weak layer throughout a season. Savage (2006) 
and Comey and McCollister (2008) defined deep 
slabs as avalanches with average crown depths 
deeper than 1.2m (4 feet). Schweizer et al. (2009) 
found large avalanches (i.e., running past a given 
point within the avalanche path) on one path in 
Switzerland to be associated with a weak snow-
pack base and a snow depth deeper than the ter-
rain roughness. Tracz (2012) examined 
meteorological conditions prior to naturally trig-
gered avalanches with crown depths greater than 
0.8m. He also defined deep slab avalanches as 
those with average crown depths greater than the 
80

th
 percentile of average crown depths in a given 

region. Conlan et al. (2014) examined “hard to 
forecast” avalanches, defined as avalanches that 
fail on a weak layer some time after the initial cy-
cle of avalanches on that weak layer. We define 
deep slab avalanches as those that fail on persis-
tent weak layers deeper than 0.9m (3 feet), and 
that occur after February 1

st
. 

We use classification trees to find meteorological 
variables that are associated with deep slab ava-
lanches on persistent weak layers late in the sea-
son. Classification trees are a popular statistical 
tool for avalanche forecasting (e.g., Davis, 1999; 
Hendrikx et al., 2005; Hendrikx et al., 2014), and 
they typically have comparable correct classifica-
tion rates (70-86% when created for predictive 
purposes) to traditional statistical forecasting 
methods such as discriminant analysis and near-
est neighbors (e.g., McClung and Tweedy, 1994). 
Classification trees split a dataset into increasingly 
homogenous groups of observations, in this case 
either events or non-events, based on a threshold 
value of explanatory variables. Although little im-
provement in operational forecasting accuracy has 
been gained by using classification trees, they 
have many benefits. They are useful for both pre-
diction and explanation, can work with smaller da-
tasets, and are usually more clear and easier to 
interpret by end users than other statistical meth-
ods (Davis et al., 1999; Hendrikx et al., 2005).  

Classification trees were created to examine sea-
sonal meteorological conditions that precede deep 
slab avalanches on persistent weak layers. A da-
taset of variables derived to summarize meteoro-
logical conditions during weak layer development 

were used to separate seasons with and seasons 
without deep slabs on persistent weak layers. 

2. METHODS 

Avalanches that failed on deep persistent weak 
layers late in the season were identified from a 44-
year historical record of avalanche occurrences at 
Bridger Bowl ski area in southwest Montana. Me-
teorological variables that may be associated with 
seasons that have deep slab avalanches on per-
sistent weak layers were defined from daily mete-
orological observations. We used classification 
trees as a statistical method to explore which me-
teorological variables may be useful for discrimi-
nating between seasons with and seasons without 
deep slab avalanches on persistent weak layers. 

2.1 Classification trees 

Classification trees essentially split a dataset into 
smaller homogenous groups of observations by 
placing observations in a group based on whether 
its value for an explanatory variable is above or 
below a certain threshold. Groups are successive-
ly split until a homogenous group is achieved, or 
until a specified stopping criterion is met (Breiman 
et al., 1993). Trees that meet these criteria are 
considered maximum, or over-fit trees. Over-fit 
trees have been used for exploratory purposes 
because the structure of these trees may reflect 
existing relationships between physical processes 
(Davis et al., 1999). However, over-fit trees are 
often overly optimistic and not suited for prediction 
(James et al., 2013). A large tree can contain 
splits that have poor predictive power on inde-
pendent samples, and lead to higher true misclas-
sification rates than a smaller “best” sized tree 
(Breiman et al., 1993). Therefore, we applied a 
traditional cross-validation pruning rule to find the 
“best” sized tree, which would reflect more accu-
rate measures of misclassification should the tree 
be used for prediction. 

Classification trees have previously been imple-
mented for avalanche forecasting purposes using 
10-fold cross validation to find the “best” sized 
trees (e.g., Hendrikx et al., 2005; Baggi and 
Schweizer 2009; Hendrikx et al., 2014). This 
method is described in detail in Breiman et al. 
(1993), and in regards to an avalanche dataset in 
Hendrikx et al. (2005). Previous work that has 
used this method for avalanche forecasting has 
produced trees with 71-86% overall correct classi-
fication (e.g., Hendrikx et al., 2005; Baggi and 
Schweizer, 2009; Hendrikx et al., 2014).  



We grew and pruned classification trees through 
recursive partitioning using the rpart package 
(Therneau et al., 2013) in R statistical software (R 
Core Team, 2013). All trees were grown using the 
Gini index to create splits that reduce the probabil-
ity of misclassification (Breiman et al., 1993). 
Over-fit trees were grown using a criteria to stop 
splitting when groups had less than 20 observa-
tions, or a minimum of seven observations (i.e., if 
a split would create a group with less than seven 
observations, then the split was not attempted). 
We implemented 10-fold cross validation using the 
one standard error rule (Breiman et al., 1993) to 
determine the “best” sized tree.  

Trees were grown to split seasons into groups of 
seasons that had deep slabs on persistent weak 
layers and groups of seasons that did not. Predic-
tive model performance of the over-fit and cross-
validated classification trees was described using 
measures explained by Wilks (1995) and Doswell 
et al. (1990), and have also been used with re-
gards to avalanche forecasting by Schweizer et al. 
(2009) and Hendrikx et al. (2014). We use the un-
weighted average accuracy (RPC), true skill score 
(TSS), false alarm ratio (FAR), probability of de-
tection (POD), probability of non-events (PON), 
and probability of non-detection (FSR, i.e., false 
stable ratio). Ideal models have a low FAR and a 
high POD and PON, which would lead to a high 
RPC and TSS (Hendrikx et al., 2014). These 
measures are defined as: 

       (
 

   
 

 

   
)                     (1) 

    
 

   
-
 

   
           (2) 

    
 

   
        (3) 

    
 

   
        (4) 

    
 

   
        (5) 

    
 

   
       (6) 

where the definitions for a-d are defined in a con-
tingency table (Tbl. 1). 

Tbl. 1: Contingency table showing definitions for 
measures of model performance. 

2.2 Deep slab avalanches on persistent weak 
layers 

Deep slab avalanches that failed on persistent 
weak layers were defined from 44 seasons (1968-
2013) of avalanche occurrence records (the 1995-
96 season was omitted due to missing data). Each 
season at Bridger Bowl roughly spans from No-
vember to April, with exact start and end dates 
varying. Ski patrollers at Bridger Bowl record all 
avalanches that are triggered by explosives as 
well as all in-bounds avalanches larger than or 
equal to relative size (R-size) two. Large and visi-
ble avalanches that occur adjacent to the ski area 
from natural or human triggers are often, but not 
always, recorded as well. Recording standards for 
observed avalanches previously followed guide-
lines of the West Wide Avalanche Network 
(WWAN), and have recently evolved towards re-
cording standards set forth by Greene et al. 
(2010). Weak layer type and other weak layer 
properties are not typically recorded based on 
these standards, so other avalanche characteris-
tics were used to determine if an avalanche was a 
deep slab on a persistent weak layer. 

Avalanche characteristics that are recorded with 
most observations, and that were used in this 
study include: Date, type of trigger, avalanche 
type, R-size, crown depth, and layers involved 
(i.e., bed surface) (Greene et al., 2010). Deep 
slabs become more difficult to forecast the longer 
a persistent weak layer has been buried (e.g., 
Conlan et al., 2014), so we restricted our study to 
avalanches that occurred after February 1

st
. If an 

avalanche was recorded with bed surface as 
“ground” (or layers involved as “all”), then it was 
considered to have failed on depth hoar (or basal 
facets) since this is a common weak layer near the 
ground in the intermountain snow climate of 
Bridger Bowl (Mock and Birkeland, 2000). Ava-
lanches on deep persistent weak layers are not 
always recorded with the bed surface as the 
ground. Avalanches that fail in depth hoar might 
fail on the upper boundary of the layer, or above a 
thin melt-freeze crust, leaving a layer of snow on 
the ground, which would cause an observer to 
record the bed surface as “old snow”. Further-
more, persistent weak layers that form higher in 
the snowpack would not be recorded with a bed 
surface of the ground and are still significant to 
this study.  

If an avalanche after February 1
st
 was not record-

ed as sliding on a basal persistent weak layer (i.e., 
bed surface of the ground), then R-size, avalanche 
type, bed surface, and average crown depth were P
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d
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Observed 

Non Av. Av. 

Non Av. a = correct non-
events 

b = misses 

Av. c = false alarms d= hits 



used to determine if it was a deep slab on a per-
sistent weak layer. Avalanches that were recorded 
with a bed surface of “old snow”, an R-size greater 
than or equal to size 2, and an average crown 
depth greater than 0.9m were examined individu-
ally to see if they likely failed on a deep persistent 
weak layer. These events were included as deep 
slabs on persistent weak layers if they were larger 
in comparison with other events during the same 
cycle, occurred without the addition of new snow, 
were significantly deeper than preceding days 
storm totals, or had similar crown depths to ava-
lanches that were recorded as sliding on the 
ground during the same or adjacent cycles. These 
events were required to have either an avalanche 
type of “hard slab” or “wet slab”, or similar charac-
teristics to avalanches recorded as sliding on the 
ground during the same or adjacent cycles. This 
was in order to ensure that deep storm slabs were 
not included.  

Soft slabs and wet loose avalanches were includ-
ed if the bed surface was recorded as the ground. 
Therefore, wet loose avalanches that failed on 
depth hoar are included in addition to all slab ava-
lanches (i.e., wet slab, soft slab, and hard slab) 
that failed on depth hoar. Avalanches between the 
2010-11 and 2012-13 season had weak layer 
types known to the senior author. During this time, 
only the 2011-12 season had deep slab ava-
lanches on persistent weak layers after February 
1

st
. Events from this season are included that were 

known to have failed on depth hoar and facet lay-
ers that formed earlier in the season (Marienthal et 
al., 2012). 

Deep slab avalanches failed on persistent weak 
layers after February 1

st
 during 24 of the 44 sea-

sons studied. Five seasons had only wet snow 
avalanches, seven seasons had only dry slab ava-
lanches, and the other twelve seasons had both 
wet and dry snow avalanches that failed on deep 
persistent weak layers after February 1

st
.   

It is typically desirable to have an almost equal 
number of events as non-events for statistical 
comparisons (Bois, 1975). While a benefit of clas-
sification trees is that they are insensitive to under-
lying distributions of data (Breiman et al., 1993), 
having an equal number of non-events during 
similar times as events is beneficial to control for 
temporal variations in confounding site specific 
factors (e.g., climate and snowpack). For these 
trees we used all seasons that did not have deep 
slabs on persistent weak layers as non-events. 
This gave us a dataset of 24 seasons with deep 

slabs on persistent weak layers and 20 seasons 
without deep slabs on persistent weak layers. 

2.3 Meteorological variables 

Bridger Bowl ski patrol records snow depth, new 
snowfall, new snow water equivalent (SWE), and 
minimum and maximum temperature over a 24-
hour period. Observations are recorded once per 
day (1600 hrs) at the Alpine weather station 
(2286m). Avalanche starting zones are primarily 
between 2400m and 2677m, so absolute weather 
values are likely to be different between the 
weather station and starting zones. Meteorological 
trends are likely similar, however, between starting 
zones and the weather station. Therefore, weather 
observations from the Alpine station still provide a 
suitable proxy about what is happening to the 
snowpack in higher elevation starting zones. Daily 
weather observations were used to derive sum-
maries of meteorological observations over the 
early months of the season, when deep persistent 
weak layers form and develop (Tbl. 2). These 
were used as explanatory variables in classifica-
tion trees that discriminate between seasons with 
and seasons without deep slabs on persistent 
weak layers late in the season.  

Seasonal meteorological variables used are rep-
resentative of meteorological conditions that are 
conducive to persistent weak layer development 
(Tbl. 2). Monthly summaries of snow depth, daily 
snowfall, and daily precipitation (SWE) may indi-
cate if snow exists on the ground early in the sea-
son, and if it is shallow enough to create a 
persistent weak layer, or deep enough to create a 
bed surface deeper than the terrain roughness 
(e.g., Schweizer et al., 2009). Monthly summaries 
of snowfall and SWE also indicate loading during 
the time of weak layer development, which may 
compact and strengthen weak layers through 
overburden pressure (e.g., Brown et al., 2001). 
Loading could also induce avalanches that may 
indicate future instability, or destroy weak layers in 
certain areas. Calculated daily temperature gradi-
ents were summarized as a relatively direct proxy 
of the snowpack temperature gradient. The pro-
portion of days in each month, or group of months, 
that had conditions conducive to persistent weak 
layer development was quantified by counting 
days with a calculated temperature gradient 
stronger than 10°C/m and a snow depth less than 
one meter. This variable potentially summarizes 
the relative amount of time that a weak layer was 
developing each season. The height of snow on 
February 1

st
, the day we begin considering deep 

slabs on persistent weak layers, is included since  
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Tbl. 2: Derived seasonal variables used in this study. 

 

it may be reflective of the snow depth and poten-
tial for persistent weak layer development prior to 
this date. 

3. RESULTS 

The over-fit tree created to split seasons with ava-
lanches on deep persistent weak layers from sea-
sons without avalanches on deep persistent weak 
layers primarily split observations based on total 
SWE in November, December, and January (Fig. 
1). Seasons with greater than or equal to 30.8cm 
of SWE from November through January primarily 
did not have deep slabs on persistent weak layers. 

Seasons that had less SWE from November 
through January were split based on the total 
SWE in December. Deep slabs on persistent weak 
layers occurred during seasons that had less than 
30.8cm of SWE from November through January 
and less than 5.6cm of SWE in December.  

Seasons with more SWE in December were split 
based on the maximum snow depth in November. 
The group of seasons with a higher maximum 
snow depth in November had more seasons with 
deep slabs than seasons without, while the oppo-
site is true for the group of seasons with lower 
maximum snow depth in November.

 

 

Fig. 1: Tree grown to split seasons with (Y) and seasons without (N) deep slabs on persistent weak lay-
ers. The cross validated tree consists of split number one only. (Figure created using the partykit 
package in R statistical software (Hothorn and Zeileis, 2013)).

NDJsumSWE

1

>= 30.8 < 30.8

Node 2 (n = 12)

N Y

0

0.2

0.4

0.6

0.8

1

sumSWEdec

3

>= 5.6 < 5.6

maxHSnov

4

< 88.1 >= 88.1

Node 5 (n = 12)

N Y

0

0.2

0.4

0.6

0.8

1

Node 6 (n = 8)

N Y

0

0.2

0.4

0.6

0.8

1

Node 7 (n = 12)

N Y

0

0.2

0.4

0.6

0.8

1

Derived Seasonal Variables     

Variable Symbol Summaries Time 

Height of snow (cm) HS avg, max Nov, Dec, Jan 

Daily SWE (cm) SWE total (sum) Nov, Dec, Jan, ND, NDJ 

24 hr snowfall (cm) HN total (sum) Nov, Dec, Jan, ND, NDJ 

Daily temperature gradient (°C/10cm) tg avg Nov, Dec, Jan, ND, NDJ 

Days with TG>10°C/m & HS<1m tgcnt proportion  Nov, Dec, Jan, ND, NDJ 

Height of snow on Feb. 1
st
 (cm) Feb1HS (observed value) once/season 



 

 

The cross-validated tree, which is most suitable for 
predictive purposes, used only the first split of the 
over-fit tree (Fig. 1). It has an RPC of 0.75, TSS of 
0.51, POD of 0.96 and PON of 0.55, with an FAR 
of 0.28 and FSR of 0.04 (Tbls. 3, 4). 

Tbl. 3: Contingency tables for both the over-fit and 
cross-validated (CV) trees. 

   Observed 
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 Non Av. Av. 

Non Av. 19 5 

Av. 1 19 

C
V

 Non Av. 11 1 

Av. 9 23 

Tbl. 4: Measures of performance, described in 
text, for over-fit and cross-validated (CV) 
tree. 

 RPC TSS FAR POD PON FSR 

Over-fit 0.87 0.74 0.05 0.79 0.95 0.21 

CV 0.75 0.51 0.28 0.96 0.55 0.04 

4. DISCUSSION 

The over-fit tree is useful for displaying the under-
lying structure of the data, and shows which varia-
bles are most associated with deep slabs on 
persistent weak layers. The first split in the over-fit 
tree separated seasons without deep slabs based 
on those seasons having greater total SWE in No-
vember, December, and January (Fig. 1). This 
metric indicates that wetter seasons have deep 
slab avalanches less frequently than dry seasons. 
More precipitation early in the season increases 
the snow depth and snow density, which would 
decrease the overall temperature gradient and 
reduce weak layer development. Furthermore, 
abundant precipitation early in the season helps 
stabilize deep slab instability even if a persistent 
weak layer does develop. Avalanches on persis-
tent weak layers earlier in the season may destroy 
persistent weak layers, and overburden pressure 
from load will strengthen weak layers (Brown et 
al., 2001).  

The second split divides seasons with less SWE in 
November, December, and January based on total 
December SWE. Seasons with a drier December 
had deep slabs on persistent weak layers. Sea-
sons with a relatively wet December, despite an 
overall relatively dry early season, had deep slabs 
when the maximum November snow depth was 
relatively deeper than seasons without deep slabs. 

The inclusion of maximum November snow depth 
suggests that while a shallow snow depth early in 
the season is conducive to a weak snowpack, 
enough depth must be maintained in order for a 
weak layer, or bed surface, to form higher than the 
terrain roughness (e.g., Schweizer et al., 2009). 

Total SWE in November, December, and January 
becomes the only split between seasons with and 
seasons without deep slabs after 10-fold cross-
validation. The cross-validated tree provides a de-
sirably low FSR (0.04) despite decreasing overall 
accuracy and skill (Tbl. 4). The inclusion of Janu-
ary in this cumulative SWE total implies the im-
portance of continuous observation of 
meteorological conditions across all months. Con-
sidering the effect of November, December, and 
January SWE totals on late season deep slab sta-
bility has less uncertainty when months are com-
bined than when they are considered individually. 
Stated more broadly, the effect of early season 
meteorological conditions on late season deep 
slab avalanche stability is dependent on the con-
tinuous interaction of various meteorological con-
ditions throughout the entire early season. 
Observations from isolated, rather than continu-
ous, periods of time will increase uncertainty in 
any avalanche forecast. 

While the over-fit tree is not suitable for prediction 
due to over-optimism, measures of model perfor-
mance are included to display the overall reduc-
tion in model performance after cross-validation 
(Tbl. 4). Overall accuracy (RPC) decreases after 
cross-validation. The only improvements after 
cross-validation are an increased POD and de-
creased FSR. Despite these improvements the 
overall skill (TSS) and accuracy (RPC) of this tree 
drop due to an increased FAR and decreased 
PON. The TSS may be the best measure of over-
all performance, and it is low (51%) for the cross-
validated tree. Hendrikx et al. (2014) achieved a 
TSS of 47% and an RPC of 73% on the dataset 
used to fit their tree. Schweizer et al. (2009) had 
RPCs ranging from 77-89% and TSS ranging from 
29-54% for various datasets. Our cross-validated 
tree shows similar levels of performance as trees 
previously applied for avalanche forecasting. 
These levels of model performance are too low to 
solely rely on for an avalanche forecast, but the 
models are still useful when combined with expe-
rience and knowledge of other forecasting tools 
and avalanche behavior. 

While the achieved model performance is compa-
rable to previous avalanche forecasting models, it 
should be noted that the sample size here is rela-



 

 

tively low for cross-validation and growing classifi-
cation trees in general (Breiman et al., 1993). De-
spite the small sample size, cross-validation is 
typically conservative in small datasets that have 
many predictors, which promotes the significance 
of the cross-validated tree’s sole predictor (total 
SWE in November, December, and January). 

Future work will consider which meteorological 
metrics are responsible for the daily triggering of 
deep slabs on persistent weak layers. We will use 
classification trees with meteorological metrics 
summarized over several days prior to days with 
avalanches in order to predict days with deep 
slabs. This will provide both a seasonal and daily 
forecasting perspective to this complex issue. 

5. CONCLUSIONS 

We used classification trees to model seasons 
with deep slab avalanches on persistent weak lay-
ers. While our classification trees do not show any 
improvement in predictive model performance 
over previous work, the variables used in the trees 
provide valuable insight about which meteorologi-
cal conditions are common during seasons with 
deep slab avalanches on persistent weak layers. 
Information regarding potential deep slab ava-
lanche hazard can be gained by considering the 
season’s meteorological history. The rate of snow 
accumulation over the early months of the season 
may control the cycle of strengthening and weak-
ening of persistent weak layers, with less gradual, 
more abrupt, loading leading to more deep slabs. 
We found that seasons with an abundance of pre-
cipitation from November through January were 
mostly stable in regards to deep slabs. While 
many seasons with an overall drier early season 
did have deep slabs, those with a shallower snow-
pack in November did not. Seasonal meteorologi-
cal conditions that indicate higher potential for late 
season deep slabs are an overall relatively dry 
early season combined with an early season 
snowpack that is shallow enough for weak layer 
formation, yet deep enough to form a significant 
weak layer or bed surface above terrain rough-
ness.  
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