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Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when
they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year
record of avalanche control andmeteorological data fromBridger Bowl ski area in southwestMontana to test the
usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined
deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after
February 1st. Previous studies oftenusedmeteorological variables fromdays prior to avalanches, butwe also con-
sidered meteorological variables over the early months of the season. We used classification trees and random
forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers
typically had less precipitation from November through January than seasons without deep slabs on persistent
weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour
air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent
weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three
days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid
forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination
with continuous observation of the snowpack and avalanche activity.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Forecasting deep slab avalanches on persistentweak layers becomes
an increasingly challenging task as the winter snowpack deepens. Ava-
lanches that fail on a particular weak layer often become less common
the longer the weak layer is buried, but when they do occur they are
typically larger and more destructive than other avalanches (Comey
and McCollister, 2008; Tracz, 2012). In contrast to avalanches that fail
on recently buried persistent weak layers and new snow instabilities,
deep slab avalanches on persistent weak layers are seldom accompa-
nied by strong evidence that suggests instability (LaChapelle and
Atwater, 1961). After certain weak layers form (e.g., depth hoar), they
endure frequent changes between weakening due to strong tempera-
ture gradients and strengthening due to weak temperature gradients
or pressure from snow accumulating above the weak layer (Bradley
and Bowles, 1967). Avalanches on recently buriedweak layers are com-
mon during and after most storms, which lends strong evidence to-
wards predicting their timing (e.g., Davis et al., 1999). Deep slab
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avalanches are commonly triggered during and shortly after storms,
but it is difficult to differentiate between storms that will trigger a
deep slab avalanche and storms that will not (e.g., Conlan et al., 2014).
Various studies have explored the difference in meteorological condi-
tions prior to days with deep slab avalanches compared to conditions
prior to days without deep slab avalanches (e.g., Conlan et al., 2014;
Jamieson et al., 2001). However, few have considered the meteorologi-
cal conditions during weak layer formation over the early months of
seasons with deep slab avalanches compared to those meteorological
conditions during seasons without deep slab avalanches. We examined
the meteorological conditions during weak layer formation in Novem-
ber, December, and January of each season, aswell as themeteorological
conditions over days prior to deep slab avalanches on persistent weak
layers at Bridger Bowl ski area in southwest Montana.

In a study by Davis et al. (1999), meteorological conditions during
weak layer formation were considered by including the starting snow
depth of the year in models created to forecast avalanche days and
size. They found starting snow depth of the year to be significant in
explaining the daily sum of avalanche size and maximum avalanche
size. Jamieson et al. (2001) compared meteorological conditions during
persistent weak layer formation between two regions where the same
weak layer developed, but only one region had extensive avalanche

http://crossmark.crossref.org/dialog/?doi=10.1016/j.coldregions.2015.08.007&domain=pdf
http://dx.doi.org/10.1016/j.coldregions.2015.08.007
mailto:alexmarienthal1@gmail.com
http://dx.doi.org/10.1016/j.coldregions.2015.08.007
http://www.sciencedirect.com/science/journal/0165232X
www.elsevier.com/locate/coldregions


228 A. Marienthal et al. / Cold Regions Science and Technology 120 (2015) 227–236
activity on this layer. They suggested that persistent weak layer forma-
tion can be predicted based on air temperature, snowfall, and precipita-
tion measurements from a suitable weather station.

A variety of definitions have been used for deep slab avalanches
in order to study meteorological variables associated with them.
Jamieson et al. (2001) focused on avalanches that failed on a buried
facet-crust weak layer throughout one season. They found that prior
meteorological conditions associated with avalanches on this layer
were cumulative precipitation up to 19 days and air temperature
change over 4–5 days. Savage (2006) found aweak correlation between
prior cumulative precipitation and deep slab avalanches, which were
defined by average crown depths deeper than 1.2 m. However, all
deep slab avalanches that he studied had wind transport on at least
one of four prior days, and 55% of deep slab avalanches occurred when
four out of five prior days had wind transport (Savage pers. comm.,
2014). Furthermore, small explosive charges were more common trig-
gers than larger explosive charges (Savage, 2006).

Schweizer et al. (2009) found large avalanches (i.e., those running
past a given point on an avalanche path) on one path in Switzerland
to be most strongly associated with substantial loading over 3–5 days
prior to avalanche release and slight increases in air temperature over
the prior 24 h. They noted that seasonally dependent variables associat-
edwith these avalancheswere aweak snowpack base and a snowdepth
deeper than the terrain roughness. Tracz (2012) examinedmeteorolog-
ical conditions prior to naturally triggered avalanches with crown
depths greater than 0.8 m. He found prior precipitation up to 12 days,
changes in air temperature up to six days, and hours of above freezing
temperatures over a period up to 12 days to be associated with these
avalanches. Similarly, Conlan et al. (2014) found hard-to-forecast ava-
lanches, defined as avalanches that fail on a weak layer some time
after the initial cycle of avalanches on that weak layer, to be associated
with precipitation and warming air temperatures. They showed precip-
itation amounts prior to hard-to-forecast avalanches were not much
greater than precipitation amounts that did not precede these ava-
lanches, and warming also commonly accompanied most snowstorms
in their region of study. This resulted in high false alarm rates when
using these variables to predict hard-to-forecast avalanches (Conlan
et al., 2014).

Our study included both dry andwet deep slab avalanches on persis-
tent weak layers. In general, dry slab avalanches are the result of stress
being added to the snowpack more quickly than increases in snowpack
strength, while wet slab avalanches are the result of a decrease in
strength of the snowpack that allows it to succumb to existing, and
sometimes added, stresses (Tremper, 2008). The addition of free
water to the snowpack is a primary contributing factor to the initiation
of wet slabs (Baggi and Schweizer, 2009; Kattelmann, 1984; Peitzsch
et al., 2012; Reardon and Lundy, 2004). Previous research has usedmea-
surements of SWE loss or snow settlement, and sustained warming,
which suggest the introduction of water to the snowpack, to forecast
wet slabs (Baggi and Schweizer, 2009; Peitzsch et al., 2012). Baggi and
Schweizer (2009) effectively used the presence of capillary barriers
(a significant difference in grain size between adjacent layers that may
impede vertical water flow through the snowpack), increased load on
a weakened snowpack, and days since the snowpack went isothermal
to forecast wet slabs in Davos, Switzerland. Previous research has also
described situations when added stress preceded wet slab avalanche
initiation, in conjunction with a decrease in snowpack strength
(e.g., Baggi and Schweizer, 2009; Marienthal et al., 2012). Reardon and
Lundy (2004) described a snowpack structure for wet slab avalanches
that included a weak basal layer. While non-basal weak layers have
been observed as failure planes for wet slabs (e.g., Conway and
Raymond, 1993), they are less frequently an issue in ski area settings
due to the frequent disturbance of the snowpack (Kattelmann, 1984).

We used classification trees and random forests to findmeteorolog-
ical variables that were associated with deep slab avalanches on persis-
tent weak layers late in the season. Classification trees are a popular
statistical tool for avalanche forecasting and research (e.g., Baggi and
Schweizer, 2009; Davis et al., 1999; Hendrikx et al., 2005, 2014). They
typically have comparable correct classification rates (70–86% when
cross-validated) to traditional statistical forecasting methods such
as discriminant analysis and nearest neighbors (e.g., McClung and
Tweedy, 1994). Although classification trees have had minimal im-
provement in operational forecasting accuracy, they have many bene-
fits. They are useful for both prediction and explanation, and they are
usually easier to interpret by end users than other statistical methods
(Davis et al., 1999; Hendrikx et al., 2005).

Random forests are a bootstrappingmethod that iteratively grows a
given number of classification trees while withholding random subsets
of data, which are used to assess model performance and parameter
importance (Breiman, 2001). Random forests have been used for ava-
lanche research on spatial variability (Guy and Birkeland, 2013) and
forecasting wet slab avalanches (Mitterer and Schweizer, 2013).

For this analysis we defined deep slab avalanches as those that failed
on persistentweak layers deeper than 0.9m, and that occurred between
February 1st and the end of the operational season (early April).
Avalanche records often did not specify the weak layer type for each
event. So, in order to imply if avalanches slid on a persistent weak
layer we used other characteristics that are commonly recorded with
avalanches. We grew classification trees and random forests from two
datasets to examine both seasonal and daily meteorological variables
that preceded deep slab avalanches on persistentweak layers at Bridger
Bowl ski area inMontana.We used variables that representmeteorolog-
ical conditions duringweak layer development to separate seasonswith
and seasons without deep slabs on persistent weak layers. In addition,
we used meteorological variables up to seven days prior to deep slab
avalanches on persistent weak layers to differentiate between days
with and days without deep slabs on persistent weak layers.

2. Methods

2.1. Deep slab avalanches on persistent weak layers

We defined deep slab avalanches that failed on persistent weak
layers from 44 seasons (1968–2013) of avalanche occurrence records
at Bridger Bowl (the 1995–96 season was omitted due to missing
data). Each season roughly spanned from November to April, with
exact start and end dates varying. Ski patrollers at Bridger Bowl record-
ed all avalanches that were triggered by explosives as well as all in-
bounds avalanches larger than or equal to relative size (R-size) two
(Greene et al., 2010). Ski patrol often, but not always, recorded large
and visible avalanches that occurred adjacent to the ski area due to
natural or human triggers. Standards used to record observed ava-
lanches previously followed guidelines of the West Wide Avalanche
Network (WWAN), and recently evolved towards recording standards
set forth by Greene et al. (2010). These standards did not typically
require weak layer type and other weak layer properties to be recorded,
so we used other avalanche characteristics to determine if an avalanche
was a deep slab on a persistent weak layer.

Avalanche characteristics that we used in this study were recorded
with most observations and include: date, type of trigger, avalanche
type, R-size, crown depth, and bed surface (i.e., layers involved)
(Greene et al., 2010). Deep slabs become more difficult to forecast the
longer a persistent weak layer has been buried (e.g., Conlan et al.,
2014), so we restricted our study to avalanches that occurred after
February 1st. If an avalanche after February 1st was recorded with bed
surface as “ground” (or layers involved as “all”), then we considered it
to have been a deep slab on depth hoar (or basal facets), because this
is a common persistent weak layer near the ground in the intermoun-
tain snow climate of Bridger Bowl (Mock and Birkeland, 2000).

Observers did not always record the bed surface as the ground for
avalanches on deep persistent weak layers. Avalanches that failed in
depth hoar might have failed on the upper boundary of the layer or



Table 1
Observed daily meteorological variables used in this study.

Variable Symbol Description

Height of snow (cm) HS Height of snow on ground
24 hour snowfall (cm) HN Height of new snow in last 24 h
Daily SWE (mm w.e.) SWE Total snow water equivalent (SWE) in 24 h
Daily maximum air
temperature (°C)

Tmax Maximum air temperature over last 24 h

Daily minimum air
temperature (°C)

Tmin Minimum air temperature over last 24 h

Table 2
Derived daily meteorological variables used in this study.

Variable Symbol Summary Intervals, i

Total (sum) 24 hour snowfall (cm) HNi 2,3,5, and 7 days
Total (sum) daily SWE (mm w.e.) SWEi 2,3,5, and 7 days
Change in snow depth (cm) HSi 2,3,5, and 7 days
Max. air temperature during time i (°C) maxTi 2,3,5, and 7 days
Min. air temperature during time i (°C) minTi 2,3,5, and 7 days
Average min. air temperature (°C) Tminavi 2,3,5, and 7 days
Average max. air temperature (°C) Tmaxavi 2,3,5, and 7 days
Degrees above zero min. air temperature (°C) minAbovezi 1,2,3, and 5 days
Degrees above zero max. air temperature (°C) maxAbovezi 1,2,3, and 5 days
Difference in minimum air temperature (°C) TminDif2 T(avalanche day)-T

(prior day)
Difference in maximum air temperature (°C) TmaxDif2 T(avalanche day)-T

(prior day)
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above a thin melt–freeze crust, leaving a layer of snow on the ground,
which would cause an observer to have recorded the bed surface as
“old snow”. Furthermore, observers would not have recorded the bed
surface as the ground for avalanches that failed on persistent weak
layers higher in the snowpack, which are still important to this study.

If an avalanche after February 1st was not recorded as sliding on
the ground (i.e., a basal persistent weak layer), then we used bed sur-
face, R-size, average crown depth, and avalanche type to determine if
it was a deep slab on a persistent weak layer.We individually examined
avalanches that were recorded with a bed surface of “old snow”, an
R-size greater than or equal to size 2, and an average crown depth
greater than 0.9m.We included these events as deep slabs on persistent
weak layers if theywere larger (size or depth) in comparisonwith other
events during the same cycle, occurred without the addition of new
snow, were substantially deeper than preceding days' storm totals, or
had similar crown depths to avalanches that were recorded as sliding
on the ground during the same or adjacent cycles. We required these
events to have either an avalanche type of “hard slab” or “wet slab” or
similar characteristics to avalanches recorded as sliding on the ground
during the same or adjacent cycles. This process was not entirely objec-
tive, but it resulted in a thorough search of each season's avalanche and
meteorological history in an attempt to ensure that deep storm snow
slabs and wind slabs were not included.

We included soft slabs and wet loose avalanches if the bed surface
was recorded as the ground. Therefore, the dataset included wet loose
avalanches that failed on basal persistent weak layers in addition to all
deep slab avalanches (i.e., wet slab, soft slab, and hard slab) that failed
on persistent weak layers. The first author knew weak layer types of
avalanches between the 2010–11 and 2012–13 seasons. During this
time, only the 2011–12 season had deep slab avalanches on persistent
weak layers after February 1st. We included events from this season
that were known to have failed on depth hoar and facet layers that
formed earlier in the season (e.g., Marienthal et al., 2012).

Statistical comparisons are typically more robust when they use a
dataset with an almost equal number of events as non-events (Bois
et al., 1975).While a benefit of classification trees is that they are insen-
sitive to underlying distributions of data (Breimanet al., 1993), a dataset
with an equal number of non-events during similar times as events is
beneficial to avoid including variables during times that deep slabs
can already be ruled out (e.g., early in the season orwhen the snowpack
does not have a persistent weak layer). For seasonal trees, we used
all seasons that did not have deep slabs on persistent weak layers as
non-events. This gave us a dataset of 24 seasons with deep slabs on
persistent weak layers and 20 seasons without deep slabs on persistent
weak layers.

For the daily analysiswe randomly selected days in each season, pro-
portional to the number of days with deep slabs on persistent weak
layers, that were after February 1st, before the date of the last deep
slab, had avalanche control performed or recorded avalanche activity,
and did not have a deep slab avalanche. We used this selection to
compare days that did not have deep slabs, but did have a persistent
weak layer present and potentially active, to an equal number of days
(in each season) that did have deep slabs on persistent weak layers.
We selected from days with avalanche control performed or observed
avalanche activity because this indicates that there was some suspicion
of instability. A total of eight days were omitted due to missing explan-
atory variables, so our analysis used a dataset of 71 days with, and
73 days without, deep slabs on persistent weak layers.

2.2. Meteorological variables

Bridger Bowl ski patrol recorded daily observations of snow depth,
new snowfall amount, new snow water equivalent (SWE), and mini-
mum and maximum air temperature over a 24-hour period. Ski patrol
collected observations once per day (1600 h) at the Alpineweather sta-
tion (2286 m). Avalanche starting zones at Bridger Bowl are primarily
between 2400 m and 2677 m, so actual weather values were likely
different between the weather station and starting zones. Relative
meteorological trends were likely similar, however, between starting
zones and theweather station. Therefore, the consistent weather obser-
vations from the Alpine station are a suitable approximation of what
was happening to the snowpack in higher elevation starting zones.

We used dailyweather observations to derive two types ofmeteoro-
logical variables that may be associated with deep slabs on persistent
weak layers. Those were daily and seasonal meteorological variables.
Similar to previous studies (e.g., Hendrikx et al., 2014; Peitzsch et al.,
2012), we used observed daily values (Table 1), and derived multi-day
totals, averages, and differences, as explanatory variables (Table 2).
We created classification trees with these variables to discriminate be-
tween days with deep slabs on persistent weak layers and days without
deep slabs on persistent weak layers. We used summaries of meteoro-
logical observations over the early months of the season (Table 3),
when deep persistent weak layers form and develop, as explanatory
variables in classification trees in order to discriminate between seasons
with and seasons without deep slabs on persistent weak layers late in
the season.

We used seasonal meteorological variables that represented meteo-
rological conditions conducive to persistent weak layer development
(Table 3). Monthly summaries of snow depth, daily snowfall, and daily
precipitation (SWE) may indicate if snow existed on the ground early
in the season, and if it was shallow enough to create a persistent weak
layer, or deep enough to create a continuous weak layer or bed surface
above local terrain features (rocks and vegetation that would disrupt
weak layer continuity within, and between, localized starting zones)
(e.g., Schweizer et al., 2009). Monthly summaries of snowfall and SWE
also indicate if therewas loading during the time ofweak layer develop-
ment, which may compact and strengthen weak layers due to the
weight of the snow above (e.g., Bradley and Bowles, 1967). Loading
could also induce avalanches that may indicate future instability, or
destroy weak layers in certain areas.

We also included monthly averages of daily snowpack temperature
gradients (Table 3). Persistent weak layers form due to a strong vapor
pressure gradient in the snowpack, which is mainly driven by the tem-
perature gradient through the snowpack (Akitaya, 1974). Constructive



Table 3
Derived seasonal meteorological variables used in this study. Summary intervals ND =
November and December, NDJ = November, December, and January.

Variable Symbol Summaries Summary Intervals

Height of snow (cm) HS Avg, max Nov, Dec, Jan
Daily SWE (mm w.e.) SWE Total (sum) Nov, Dec, Jan, ND, NDJ
24 hour snowfall (cm) HN Total (sum) Nov, Dec, Jan, ND, NDJ
Daily temperature gradient
(°C/10 cm)

tg Avg Nov, Dec, Jan, ND, NDJ

Days with TG N 10 °C/m &
HS b 1 m

tgcnt Proportion Nov, Dec, Jan, ND, NDJ

Height of snow on Feb. 1st (cm) Feb1HS (Observed value) Once/season

Table 4
Contingency table showing definitions for measures used to calculate model performance
(Eqs. (1)–(6)). “Av.”= avalanche days (or seasons) and “Non-av.”=non-avalanche days
(or seasons).

Observed

Non-av. Av.

Predicted Non-av. a = correct non-events b = misses
Av. c = false alarms d = hits
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metamorphism is thephysical process that formspersistentweak layers
(Armstrong, 1985), and in practice, is associated with temperature
gradients within the snowpack that exceed 10 °C/m (e.g., McClung
and Schaerer, 2006; Mock and Birkeland, 2000). We derived the daily
minimum temperature gradient through the snowpack by assuming
the groundwas at 0 °C, and dividing the dailyminimumair temperature
by snow depth. Previous studies have used similar calculations as an
effective estimate of the snowpack temperature gradient (Mock and
Birkeland, 2000).

A deeper snowpack attenuates the effect of air temperature on the
snowpack temperature gradient (Gray and Male, 1981 p. 298). There-
fore, we quantified the proportion of days in each month, or group
of months, that had conditions conducive to persistent weak layer
development by counting days with a calculated temperature gradient
stronger than 10 °C/m and a snow depth less than one meter
(Table 3). This variable potentially summarizes the relative amount of
time that a weak layer (e.g., depth hoar) was subject to constructive
metamorphism each season.

The height of snow on February 1st, the day we began considering
deep slabs on persistent weak layers, was included because a shallow
snow depth may be reflective of higher potential for persistent weak
layer development prior to the date in which we began forecasting.
This is the only seasonal meteorological variable that is an isolated
observed value, not a summary of values over one or more months.

2.3. Classification trees

Classification trees split a dataset into smaller homogenous groups
of observations by placing observations in a group based on whether
its value for an explanatory variable is above or below a statistically de-
fined threshold. Groups are successively split until a homogenous group
is achieved, or until a specified stopping criterion is met (Breiman et al.,
1993). Trees that meet these criteria are considered maximum or over-
fit trees. Over-fit trees have been used for exploratory purposes because
the structure of these trees may reflect existing relationships between
physical processes (Davis et al., 1999). However, over-fit trees are
often overly optimistic and not suited for prediction (James et al.,
2013). A large tree can contain splits that have poor predictive power
on independent samples, and lead to higher true misclassification
rates than a smaller “best” sized tree (Breiman et al., 1993). Therefore,
we applied a traditional cross-validation pruning rule to find the
“best” sized tree, which would reflect more accurate measures of mis-
classification should the tree be used for prediction.

Previous studies have implemented classification trees for avalanche
forecasting purposes using 10-fold cross-validation to find the “best”
sized trees (e.g., Baggi and Schweizer, 2009; Hendrikx et al., 2005,
2014; Peitzsch et al., 2012). This method is described in detail in
Breiman et al. (1993), and in regards to an avalanche dataset in
Hendrikx et al. (2005). Previous work that used this method for
avalanche forecasting produced trees with 71–86% overall correct clas-
sification (e.g., Baggi and Schweizer, 2009; Hendrikx et al., 2005, 2014).

We grew and pruned classification trees through recursive parti-
tioning using the rpart package (Therneau et al., 2013) in R statistical
software (R Core Team, 2013). The default for this package used the
Gini index to create splits that reduce the probability ofmisclassification
(Breiman et al., 1993).We grew over-fit trees using the default stopping
criteria in R,which stopped creating splitswhen groups had less than 20
observations, or a minimum of seven observations (i.e., if a split would
create a group with less than seven observations, then the split was
not attempted). We implemented 10-fold cross-validation using the
one standard error rule (Breiman et al., 1993) to determine the “best”
sized trees.

We grew trees to split seasons into groups of seasons that had deep
slabs on persistent weak layers and groups of seasons that did not. We
also grew trees to split days into groups of days that had deep slabs on
persistent weak layers and groups of days that did not. We described
predictivemodel performance of the over-fit and cross-validated classi-
fication trees using measures explained by Wilks (1995) and Doswell
et al. (1990). These measures have also been used with regards to ava-
lanche forecasting by Schweizer et al. (2009) andHendrikx et al. (2014).
We used the unweighted average accuracy (RPC), true skill score (TSS),
false alarm ratio (FAR), probability of detection (POD), probability of
non-events (PON), and probability of non-detection (FSR i.e., false sta-
ble ratio). Ideal models have a low FAR and a high POD and PON,
which would lead to a high RPC and TSS (Hendrikx et al., 2014). These
measures are defined in Eqs. (1)–(6) as:

Unweightedaverageaccuracy : RPC ¼ 0:5
a

aþ c
þ d
bþ d

� �
ð1Þ

Trueskillscore : TSS ¼ d
bþ d

−
c

aþ c
ð2Þ

Falsealarmratio : FAR ¼ c
cþ d

ð3Þ

Probabilityof detection : POD ¼ d
bþ d

ð4Þ

Probabilityof non‐events : PON ¼ a
aþ c

ð5Þ

Probabilityof non‐detection : FSR ¼ b
bþ d

ð6Þ

where the definitions for a–d are defined in a contingency table
(Table 4).

Due to the small dataset, we used random forests to assess the stabil-
ity of the classification trees' predictive power (Breiman, 2001). The
random forest method iteratively grows 500 classification trees while
successively withholding (with replacement) random variables and
subsets of data. This method gives a more accurate (average) measure
of predictive model performance at the expense of interpretability.
We used the randomForest package in R statistical software to create
random forests (Liaw and Wiener, 2002). The randomForest package
determined Model performance for the random forest models using
the estimated classification rates for the data that were withheld from
fitting of each tree, which is referred to as the “out-of-bag” sample
(Breiman, 2001). We assessed the importance of each variable using
the mean decrease in accuracy (MDA), which was calculated in
randomForest by individually permuting each variable in every tree in



Table 5
Summary of dayswith avalanches in the 24 seasons that had at least one avalanche failing
on a deep persistent weak layer after February 1st. Seasons are defined by the year in
which they started (e.g., 1968 was from November 1968–April 1969). Totals from each
season are summarized by type: hard-slab (HS), soft-slab (SS), wet-loose (WL), and
wet-slab (WS).

Season # of
days

Wet snow
days

# of
avalanches

Wet snow
avalanches

HS SS WL WS

1968 3 1 8 4 3 1 0 4
1971 2 1 3 1 2 0 0 1
1974 2 0 2 0 0 2 0 0
1975 5 4 49 48 0 1 10 38
1976 2 1 2 1 1 0 0 1
1977 1 1 4 4 0 0 4 0
1978 2 1 2 1 1 0 1 0
1979 3 0 3 0 3 0 0 0
1980 3 0 13 0 3 10 0 0
1981 1 0 1 0 0 1 0 0
1984 6 3 22 12 9 1 0 12
1985 3 1 6 2 4 0 0 2
1986 4 1 11 7 0 4 0 7
1987 1 1 1 1 0 0 0 1
1989 1 1 1 1 0 0 1 0
1991 1 1 2 2 0 0 2 0
1992 4 2 9 5 3 1 3 2
1993 1 0 1 0 1 0 0 0
2000 1 1 1 1 0 0 1 0
2002 9 1 13 2 3 8 2 0
2003 2 1 3 2 1 0 2 0
2006 4 0 10 0 1 9 0 0
2009 1 0 1 0 1 0 0 0
2011 14 4 29 17 10 2 0 17
Total 76 26 197 111 46 40 26 85
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the forest duringmodeling. TheMDA for a variable was the average dif-
ference (across all trees) in error rate, for classifying the out-of-bag data
when that variable was permuted in a tree, divided by the standard
deviation of the difference in error rate for all trees (Breiman, 2001).

3. Results

Deep slab avalanches failed on persistent weak layers after February
1st during 24 of the 44 seasons studied. Therewere a total of 197 events
NDJsumSWE
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N Y

0
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N Y
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Fig. 1.Over-fit classification tree to split seasons with (Y) and seasons without (N) deep slabs o
above the dotted line. The first split is the total SWE in November, December, and January (no
height of snow in November (node 4). Variables are described in Tables 1, 2 & 3.
on 76 days in February, March, and April. Of these days, 50 had dry slab
avalanches and 26 had wet snow avalanches. Five seasons had only wet
snow avalanches, seven seasons had only dry slab avalanches, and the
other twelve seasons had both wet and dry deep slab avalanches on
persistent weak layers after February 1st (Table 5).

Total SWE in November, December, and January split seasons with
avalanches on deep persistent weak layers from seasons without ava-
lanches on deep persistent weak layers in the only split of the seasonal
cross-validated tree (Fig. 1). Seasons that had greater than or equal to
308 mm w.e. of SWE from November through January did not have
deep slabs on persistentweak layers during 92% (11 of 12) of those sea-
sons. Seasons that had less than 308 mm w.e. of SWE from November
through January had deep slabs on persistent weak layers during 72%
(23 of 32) of those seasons. The over-fit tree further split the seasons
with less SWE towards homogeneity based on the total SWE in Decem-
ber (Fig. 1, node 3) and themaximum snow depth in November (Fig. 1,
node 4).

The minimum air temperature over the past 24 h was the primary
split in the cross-validated classification tree that split days with and
days without deep slabs on persistent weak layers (Fig. 2). The group
of days that had minimum air temperatures less than −9.5 °C did not
have deep slabs on persistent weak layers on 75% (48 of 64) of the
days. The group of days that had minimum air temperatures greater
than or equal to −9.5 °C had deep slabs on persistent weak layers on
66% (53 of 80) of the days. The latter group was further split based on
the average maximum air temperature over the previous three days
(Fig. 2, node 5). The group of days that had an average maximum air
temperature over the previous three days greater than 7.2 °C had
deep slabs on persistent weak layers on 95% of the days. Avalanches
on these days were usually wet avalanches.

Days with a lower average maximum air temperature over three
days were split based on the change in snow depth over the previous
seven days (Fig. 2, node 6). Days with more than 10 cm of snow settle-
ment over the previous seven days did not have any (0 of 9) deep slabs
on persistent weak layers. Days with less settlement, or more precipita-
tion, had deep slab avalanches on persistent weak layers on 66% (33 of
50) of the days. The over-fit tree further split this last group of days
based on the height of snow and snow depth change over the previous
three days (Fig. 2, nodes 8 & 9).
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The cross-validated trees, which are most suitable for predictive
purposes, had stronger model performance for both sets of data
(Tables 6, 7) than the random forests (Tables 8, 9). The random forests
ranked themost important variables based on theMDA. In the seasonal
forest, total new snow in December was the most important variable
followed by total SWE in December, total SWE over November, Decem-
ber and January, and total SWE in January. These were followed by the
proportion of days in November and December with conditions condu-
cive to constructive metamorphism, and then the proportion of days in
November, December and January with these conditions. The seventh
and eighth most important variables in the seasonal forest were maxi-
mumsnowdepth inNovember andmaximumsnowdepth inDecember
(Fig. 3).

The most important variable in the daily forest, based on the MDA,
was minimum air temperature. This was accompanied in the top ten
most important variables by average maximum air temperature over
7,5,3 and 2 days, minimum daily temperature gradient, total degrees
above zero for the maximum air temperature over 2,3 and 5 days, and
total degrees above zero over 5 days for the minimum air temperature
(Fig. 3).

4. Discussion

4.1. Seasons with deep slabs on persistent weak layers

The classification trees for each dataset were useful for displaying
the underlying structure of the data, and to show which variables
Table 6
Contingency tables for all classification trees. “Av.” = avalanche days (or seasons) and
“Non-av.” = non-avalanche days (or seasons), “CV” = cross-validated.

Observed

Seasons Days

Non-av. Av. Non-av. Av.

Predicted Over-fit Non-av. 19 5 60 11
Av. 1 19 15 58

CV Non-av. 11 1 57 16
Av. 9 23 18 53
were associated with deep slabs on persistent weak layers at Bridger
Bowl. The first split in the tree for seasons with and seasons without
deep slabs on persistent weak layers isolated seasons without deep
slabs based on those seasons having greater total SWE in November,
December, and January (Fig. 1). This variable indicates that seasons
with more than 308 mm w.e. of SWE from November through January
less frequently had deep slab avalanches than seasons with less precip-
itation during that time.

More precipitation early in the season implies higher snow depth
and snow density, whichwould decrease the overall snowpack temper-
ature gradient and limit conditions forweak layer development. Cold air
temperatures are often needed in addition to a shallow snowpack to
create a strong temperature gradient. However, the frequent occurrence
of long clear nights in southwestMontana allows for substantial cooling
of the snowpack due to emitted longwave radiation, evenwhen air tem-
perature is relatively warm. Therefore, a shallow snow depth alonemay
imply weak layer formation in this region. Furthermore, abundant
precipitation early in the season helps stabilize late season deep slab
instability even if a persistent weak layer does develop. Avalanches on
persistent weak layers earlier in the season may destroy persistent
weak layers, and pressure from the weight of snow accumulated
above weak layers can strengthen weak layers in some situations
(Bradley and Bowles, 1967).

The second split (Fig. 1, node 3) used total SWE in December to
divide seasons with less than 308 mm w.e. of SWE in November,
December, and January. All seasons that had less than 56 mm w.e. of
SWE in December had deep slabs on persistent weak layers. Seasons
Table 7
Measures of model performance for each classification tree (Eqs. (1)–(6)): unweighted
average accuracy (RPC), true skill score (TSS), false alarm ratio (FAR), probability of detec-
tion (POD), probability of non-events (PON), and probability of non-detection (FSR). The
first and third rows pertain to the over-fit trees for seasons and days, respectively, and the
second and fourth rows are for the cross-validated (CV) trees.

RPC TSS FAR POD PON FSR

Seasons 0.87 0.74 0.05 0.79 0.95 0.21
CV 0.75 0.51 0.28 0.96 0.55 0.04
Days 0.82 0.64 0.21 0.84 0.80 0.16
CV 0.76 0.53 0.25 0.77 0.76 0.23



Table 8
Contingency table for random forests. “Av.”=avalanche days (or seasons) and “Non-av.”=
non-avalanche days (or seasons).

Observed

Seasons Days

Non-av. Av. Non-av. Av.

Predicted Non-av. 13 7 49 7
Av. 9 14 32 33

Table 9
Measures of model performance for random forest (Eqs. (1)–(6)): unweighted average
accuracy (RPC), true skill score (TSS), false alarm ratio (FAR), probability of detection
(POD), probability of non-events (PON), and probability of non-detection (FSR).

RPC TSS FAR POD PON FSR

Seasons 0.63 0.26 0.39 0.67 0.59 0.33
Days 0.59 0.18 0.49 0.58 0.60 0.42
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with more SWE in December, despite overall less SWE from November
through January, had deep slabs more often when the maximum
November snow depth was deeper than 88.1 cm (Fig. 1). The inclusion
of maximum November snow depth in the tree suggests that while a
shallow snow depth early in the season is conducive to a weak snow-
pack, enough depth must be maintained in order for a weak layer,
or bed surface, to form above local terrain features (e.g., Schweizer
et al., 2009).

Total SWE in November, December, and January became the only
split between seasons with and seasons without deep slabs after 10-
fold cross-validation. The cross-validated tree provided a desirably low
FSR (0.04) despite decreasing overall accuracy and skill (Table 7). The
inclusion of values from November through January in this cumulative
SWE total implies the importance of continuous observation of meteo-
rological conditions across all months. When November, December,
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Fig. 3. Variable importance shown using theMDA for each variable in the random forests for se
and January SWE totals are combined in a forecast for deep slabs on per-
sistent weak layers late in the season, there is less uncertainty than
when they are used individually. Stated more broadly, the effect of
early season meteorological conditions on late season deep slab ava-
lanche stability is dependent on the continuous interaction of various
meteorological conditions throughout the entire early season. The
bottom ranking of the February 1st height of snow, our only isolated
seasonal observation, in the random forest (Fig. 3) is further support
that observations from isolated, rather than continuous, periods of
time have higher uncertainty in an avalanche forecast.
4.2. Days with deep slabs on persistent weak layers

Air temperatures over days prior to deep slabs on persistent weak
layers were typically warmer than days without deep slabs on persis-
tent weak layers (Fig. 2). There was also greater cumulative precipita-
tion prior to days with deep slabs on persistent weak layers than prior
to days without deep slabs on persistent weak layers. The groups of
days that were split based on five-day total SWE or change in snow
depth over seven days had deep slabs on persistent weak layers on
60–66% of the days that had greater precipitation (Fig. 2). Previous find-
ings have also shown significance of cumulative loading and warming
trends prior to deep slabs (Conlan et al., 2014; Jamieson et al., 2001;
Schweizer et al., 2009; Tracz, 2012).

The final splits of the over-fit daily tree, which utilize height of snow
and a positive change in snow depth over three days, do not provide as
clear of an interpretation as the higher splits, but they support the im-
portance of considering overall snow depth and cumulative load prior
to deep slabs (Fig. 2). Days with a snow depth greater than 163.9 cm
were mostly deep slab days (Fig. 2). This is somewhat of a surprise as
a shallower snowpack can often indicate more instability. This high-
lights the importance of consideringmeteorological conditions continu-
ously through months prior to periods of elevated likelihood of deep
slab avalanches.
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Days that had an average maximum air temperature over the prior
three days greater than 7.2 °C were mostly days with deep wet ava-
lanches (Fig. 2). Sustained above freezing air temperatures prior to
wet slabs is common as it implies a variety of conditions that are condu-
cive to wet slab initiation (e.g., Baggi and Schweizer, 2009; Peitzsch
et al., 2012). While longer periods of sustained warming may be more
conducive than shorter periods of sustained warming to the initiation
of deep wet slabs (e.g., more time may be required before a refreeze
for water to reach a deep weak layer), other variables must also be con-
sidered to assess deep wet slab potential, such as snowpack structure
(e.g., Reardon and Lundy, 2004), and previous deep dry slab activity
on persistent weak layers (e.g., Marienthal et al., 2012). Nonetheless,
if the potential for deep slabs on persistent weak layers exists, then
sustained above freezing air temperatures are evidence to suggest
increasing hazard.

While the introduction of liquidwater due to above freezing air tem-
peratures is a relevant factor for wet slabs (Baggi and Schweizer, 2009;
Peitzsch et al., 2012), above freezing and warm air temperatures also
affect slab deformation rates in regards to dry slab avalanche initiation
(McClung, 1996; Reuter and Schweizer, 2012; Wilson et al., 1999).
Tracz (2012) found sustained above freezing air temperatures prior
to dry deep slabs. In addition, previous research has suggested that
warmer snow surface temperatures facilitate skier-triggering of dry
slabs and increase overall slab instability (McClung, 1996; McClung
and Schweizer, 1999; Reuter and Schweizer, 2012; Schweizer and
Jamieson, 2010; Schweizer et al., 1995; Wilson et al., 1999). Despite
empirical data of dry deep slabs during warming andwarmer tempera-
tures (e.g., Conlan et al., 2014; Schweizer et al., 2009), strong evidence
to support an explainable causal effect for the coincidence of dry slab
avalanches during warming is rare (e.g., Reuter and Schweizer, 2012;
Schweizer and Jamieson, 2010).
4.3. Random forests

Variables that made up splits in the cross-validated classification
trees also had high importance rankings in the random forests (Fig. 3).
This supports the variables' utility as predictors for deep slabs on persis-
tent weak layers as well as interpretations of their physical relationship
to deep slabs. The cross-validated trees did not choose the variables
representing the proportion of days with temperature gradient and
snow depth conducive to weak layer development as splits. However,
the high ranking of these variables in the random forests shows the im-
portance of the upper threshold of early season snow depth (i.e., 1 m)
on impeding weak layer development, while the importance of maxi-
mumNovember and December snow depth may represent a minimum
early season snow depth requirement, as shown in the over-fit classifi-
cation tree (Fig. 1).

Minimum 24-hour air temperature was themost important variable
in the random forest for predicting days with deep slabs on persistent
weak layers (Fig. 3), and it was the primary split for the daily classifica-
tion trees (Fig. 2). Average maximum air temperature over three days
was the only other variable among the ten most important in the
random forest that was also used as a split in the classification trees
(Fig. 2). However, the abundance of highly important variables that
summarize maximum air temperatures over multiple days strengthens
the importance of sustained warming and variables that reflect rate
dependent processes when forecasting deep slabs (e.g., Tracz, 2012).

The random forest suggested an overall lack of importance of load-
ing variables for forecasting days with deep slabs. Despite being ranked
low, themost important loading variable in the random forest was total
new snow over five days, directly followed by total SWE over five days
(Fig. 3). This supports thehigher importance of cumulative precipitation
amounts compared to precipitation amounts over a shorter time. The
difficulty in forecasting deep slabs based on loading from precipitation
is apparent from the low rank of these variables, likely due to high
false alarm rateswhen trying to forecast deep slabs based on a threshold
amount of precipitation (e.g., Conlan et al., 2014).

4.4. Model performance

Although over-fit trees are not suitable for prediction, their mea-
sures of model performance were included to display the overall
reduction in model performance after cross-validation (Table 7).
Cross-validation resulted in a decrease in average accuracy (RPC) for
both trees. The only improvements for the seasonal tree after cross-
validation were an increased POD and decreased FSR. Despite these
improvements, the overall skill (TSS) and accuracy (RPC) of this tree
dropped due to an increased FAR and decreased PON. The best measure
of overall performance may be the TSS, and it was low (0.53 and 0.51)
for both trees. Hendrikx et al. (2014) achieved a TSS of 0.47 and an
RPC of 0.73 on the dataset used to fit their tree. Schweizer et al.
(2009) had RPCs ranging from 0.77–0.89 and TSS ranging from 0.29–
0.54 for various datasets. Our cross-validated trees had similar levels
of performance as trees previously applied for avalanche forecasting.

While our trees' achieved model performance was comparable
to previous avalanche forecasting models, it should be noted that the
sample size was relatively low for cross-validation and growing classifi-
cation trees in general (Breiman et al., 1993). Despite the small sample
size, cross-validation is typically conservative in small datasets that
have many predictors, which promotes the value of the seasonal
cross-validated tree's sole predictor (Fig. 1) and the three variables
that made splits in the daily cross-validated tree (Fig. 2).

The overall predictive accuracy of the random forests, based on
model performance measures, was poorer than for the cross-validated
trees (Table 9). In addition, the random forests had a large increase
in FAR and FSR, and decreased TSS. This shows the random forests'
decreased ability to separate seasons (or days) with deep slabs from
those without deep slabs as compared to the cross-validated trees.
The random forests, however, are a depiction of the average predictive
power of either dataset (Liaw and Wiener, 2002), and they further
support the importance of the variables used as splits in the classifica-
tion trees.

Guy and Birkeland (2013) found a wide range of success rates (62–
80%) and TSS (0.17–0.38) when using random forests to classify poten-
tial avalanche trigger locations based on terrain parameters. Our model
performance results are comparable despite being close to the lower
end of those ranges. While the cross-validated trees provide better
TSS and lower FAR and FSR, the random forests likely provide a more
accurate estimate of the uncertainty in the dataset since their model
performance is an average across all trees.

4.5. Limitations, uncertainty, and scope of study

Themodels' relatively low skill, inherent uncertainty in the data, and
the scope of this study limit the sole use of thesemodels, or their impor-
tant variables, for predicting deep slab avalanches. The measures of
model performance are too low to rely on for an avalanche forecast,
but the models and their findings are still useful when combined with
experience and knowledge of other forecasting tools and avalanche be-
havior. Our results provide interpretations of observed meteorological
data, which often require greater evaluation to reduce their uncertainty.
Interpretations of these data should be combined with two other previ-
ously described types of data: 1) snowpack structure data and 2) snow
mechanical data that directly indicate instability due to an applied load
(e.g., avalanche occurrence), which both have inherently lower (in
decreasing order) uncertainty (LaChapelle, 1980; McClung, 2002).
Direct observation of the snowpack and avalanche occurrences, and
intimate knowledge of local to regional terrain and climate, are essential
to understand in addition to model predictions andmeteorological var-
iables suggested to be of high importance by research and observation.
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Our method of selecting days with deep slabs on persistent weak
layers introduced further uncertainty to this study. The absence of
documentedweak layer types in avalanche observations greatly limited
the selection of deep slabs on persistent weak layers. It is possible that
we included deep slabs not on persistent weak layers, and excluded
some deep slabs on persistent weak layers. We may have not included
noteworthy events that occurred late in January due to only considering
deep slabs after February 1st. We thoroughly reviewed avalanches that
were selected as deep slabs on persistent weak layers to limit errors.

Our dataset of avalanches at Bridger Bowl included both dry andwet
deep slab avalanches on persistent weak layers (Table 5). Combining
these events should not have affected our results of which meteorolog-
ical variables early in the season were associated with deep slabs on
persistentweak layers later in the season. A similar snowpack structure,
which forms due to early season meteorological variables, contributes
to deep dry slabs and deep wet slabs on persistent weak layers
(e.g., Marienthal et al., 2012; Reardon and Lundy, 2004). Furthermore,
our classification tree that split days with deep slab avalanches from
days without deep slabs split out deep wet slabs based on the average
of themaximum air temperature over the previous three days. This dis-
plays the classification tree's ability to split different types of avalanches
based on a variable that is reflective of a major difference in the release
mechanism of each avalanche type.

The scope of the data and analysis further limit the findings of this
study. These data were entirely observational (i.e., no random assign-
ment to groups) and not selected from a larger population. Therefore,
we make no statistical inference about the causal relationship between
meteorological variables and deep slabs on persistent weak layers, and
we make no statistical inferences about similar phenomena outside
the study area and time period.We canmake practical inferences, how-
ever, to future situations within the study area and in areas that have
similar terrain and snow climates. Therefore, our findings are practically
applicable to Bridger Bowl ski area and similar regions that experience
a predominantly intermountain or continental snow climate with
frequent persistent weak layers near the base of the snowpack.

Amore holistic solution to forecasting deep slabs on persistentweak
layers may require the inclusion of snowpack properties and avalanche
occurrence on persistent weak layers throughout the season. While
inclusion of other datamay reduce uncertainty in models and forecasts,
an approach that considers every situation as unique and acknowledges
that many factorsmay not be accounted for is essential for an avalanche
forecast. Furthermore, personal and operational goals affect the accept-
able level of risk for a given avalanche forecast and will add bias that
should be recognized in order to reduce uncertainty.

5. Conclusion

We used classification trees and random forests to model meteoro-
logical variables associated with deep slab avalanches on persistent
weak layers after February 1st at Bridger Bowl. While our models did
not show improvement in predictive performance over previous work,
the variables used in the models provide valuable insight about which
meteorological conditionsmay precede deep slab avalanches on persis-
tent weak layers at Bridger Bowl.

In line with much previous work, our results showed greater cumu-
lative precipitation and warmer air temperatures prior to days with
deep slabs on persistent weak layers, and sustained above freezing air
temperatures prior to days with deep wet slabs on persistent weak
layers, as compared to days without deep slabs on persistent weak
layers. The abundance of highly important variables that summarize
warm air temperatures over days preceding deep slabs indicate the im-
portance of temperature and rate dependent variables for forecasting
dry andwet deep slabs. A lack of importance of variables, in the random
forest, that indicate loading prior to days with deep slabs further exem-
plifies the difficulty in considering the amount of loading due to precip-
itation when forecasting deep slabs.
We gained additional information regarding potential for deep slab
avalanches on persistent weak layers by considering meteorological
variables from the beginning of the season. Seasonal meteorological
conditions that indicated higher potential for late season deep slabs
were an overall relatively dry early season combined with an early sea-
son snowpack that was shallow enough for weak layer formation, yet
deep enough to form a spatially continuous weak layer or bed surface
above local terrain features.

Our results from random forests further support the important splits
that we found in classification trees. Maximum early season snow
depth, early season precipitation, and minimum snow depth required
for a sufficient weak layer to form, were highlighted in the random
forest for seasons with deep slabs on persistent weak layers. Minimum
24-hour air temperature was ranked most important in the random
forest, and it was the primary split in the classification tree, for days
with deep slabs on persistent weak layers.

We found that summaries of observed meteorological variables
through the season are useful to aid forecasting deep slab avalanches
on persistent weak layers. The specific meteorological variables fea-
tured in this paper are limited to areas with similar terrain and climate
as Bridger Bowl, and observed meteorological variables should be
combined with continuous analysis of local snowpack observations
and avalanche activitywhen forecasting deep slab avalanches on persis-
tent weak layers.
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