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ABSTRACT 

Many ski areas, backcountry avalanche centers, highway departments, and 
helicopter ski operations record and archive daily weather and avalanche data.  The 
objective of this thesis is to present probabilistic techniques that allow avalanche 
forecasters to better utilize weather and avalanche data by incorporating a Geographic 
Information System with a modified meteorological nearest neighbors approach.  This 
nearest neighbor approach utilizes evolving concepts related to visualizing geographic 
information stored in large databases.  The resulting interactive database tool, Geographic 
Weather and Avalanche Explorer, allows the investigation of the relationships between 
specific weather parameters and the spatial pattern of avalanche activity.  In order to 
validate these new techniques, two case studies are presented using over 10,000 
individual avalanche events from the past 23 years that occurred at the Jackson Hole 
Mountain Resort.   

The first case study explores the effect of new snowfall, wind speed, and wind 
direction on the spatial patterns of avalanche activity.  Patterns exist at the slide path 
scale, and for groups of adjacent slide paths, but not for either the entire region as a 
whole or when slide paths are grouped by aspect.  Since wind instrumentation is typically 
located to measure an approximation of the free air winds, specific topography around a 
given path, and not aspect, is more important when relating wind direction to avalanche 
activity. 

The second case study explores the spatial variability of hard slab and dry loose 
avalanches, and characterizes these avalanche types with respect to their geographic 
location and associated weather conditions.  I analyzed these data with and without the 
incorporation of three weather parameters (wind speed, 24-hour maximum temperature, 
and new snow density).  Slide paths near each other often had similar proportions of hard 
slabs and a higher proportion of hard slabs occurred on exposed ridges.  The proportion 
of loose avalanches also was similar for adjacent slide paths, and these paths were 
typically sheltered from strong winds.  When I incorporated the three weather parameters 
I found significant increases in the average proportion of hard slabs with increases in new 
snow density, but not for changes in the 24-hour maximum temperature or wind speed.  
When I analyzed the proportion of loose avalanches associated with the three weather 
parameters I found a more direct relationship than with hard slabs.  Changes in both wind 
speed and density significantly changed the average proportion of loose avalanches, with 
low wind and low density resulting in higher proportions of loose avalanches.  My results 
quantify what operational avalanche forecasters have long known: Geographic location 
and weather are both related to the proportion of hard slab and dry loose avalanches.
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INTRODUCTION 

Avalanches are dangerous.  Besides threatening roads, structures, and ski areas, 

avalanches have killed a total of 703 people in the United States from the winter season 

of 1950-51 to 2003-04 (Northwest Avalanche Center, 2004).  From the 1910s to the end 

of the current season (2003-04) the state of Wyoming, where this research took place, has 

experienced a total of 54 deaths caused by avalanches (Figure 1).  The cause of these 

fatal avalanches often involves human-error and they may have been avoidable, however 

some occur due to a lack of scientific understanding about avalanche processes and the 

timing and location of avalanches.  The avalanche community needs to better understand 

the spatial and temporal patterns of avalanches in order to improve its ability to forecast 

their occurrence and avoid the dangers they pose. 

Forecasting today utilizes direct observations, field tests, and the analysis of 

meteorological data.  However, improvements are needed in our ability to visualize and 

therefore understand these spatial patterns of avalanches.  This study provides those 

improved techniques and a variety of visual tools for forecasters and researchers.  

Additionally, current data analysis techniques are not user-friendly. Therefore, while 

many snow safety operations have collected weather and avalanche data, most are not 

analyzing them.  I have created a program to address these problems.  

A scientific understanding of avalanches, as well as knowledge of the local patterns 

of avalanche activity (gained through experience) is crucial for avalanche forecasters 

(McClung, 2002a).  The former can be taught, but the latter is much more difficult to 

teach, communicate, or even define.  For example, how new snow, wind speed, and wind 
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Figure 1: Wyoming Avalanche Fatalities by Decade from 1911-2003. 

direction conceptually lead to selective wind loading and the formation of slab 

avalanches is relatively easy to teach and understand.  However, an understanding of 

which particular slide paths load under which conditions of new snow, wind speed, and 

wind direction requires additional knowledge that may require decades of local individual 

observations and experience.  
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Objective and Hypothesis 

This thesis presents new methods to better utilize historical weather and avalanche 

data to enable the visualization of avalanche probabilities and the generation of 

hypotheses about the spatial and temporal pattern of avalanches. My hypothesis is that 

meteorological variables play a predictive role in creating regional spatial patterns of 

avalanche activity, and that different weather conditions create different patterns of 

avalanche activity.  For example, freezing lines may segregate wet avalanches from dry 

avalanches, or changes in wind direction may load different slopes. 

To address this objective I have created a software program to analyze historical 

weather and avalanche data by combining a meteorological nearest neighbors technique 

with a Geographic Information System (GIS) using Geographic Knowledge Discovery 

(GKD) concepts.  The result is a user-friendly database tool to visualize data via dynamic 

maps and graphs, thereby taking advantage of the pattern recognition capacity of humans.  

This is only a tool for the avalanche forecaster or researcher to help digest and interact 

with large amounts of data. It is not a replacement for an avalanche forecaster. 

To verify these methods I present two case studies.  In the first study I investigated 

relationships between new snowfall, wind speed, and wind direction on the avalanche 

activity at the Jackson Hole Mountain Resort, Wyoming for the entire ski area, for sub-

regions, for groups with similar aspect and elevation, and for individual avalanche paths.  

I chose the three variables of new snowfall, wind speed, and wind direction to define the 

factor of wind loading.  These variables are known to play a major role in wind loading.  

Wind loading is a primary factor for avalanches, especially in a ski area setting where 
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daily disruption of snow pack layers occurs via skier compaction and avalanche reduction 

measures. 

The second study builds upon the first. It compares two avalanche types (hard slab 

avalanches and loose avalanches) with wind speed, 24-hour maximum temperature, and 

new snow density.  These three weather variables may contribute to the formation, or 

lack there of, of hard slabs.  An increase in wind speed may increase hardening of the 

new snow leading to an increase in hard slabs.  Warmer temperatures increase settlement 

rates, and may thereby increase the formation of hard slabs.  Finally, an increase in new 

snow density may relate to denser harder slabs.  Both case studies are presented here in 

their publication format.  They stand as separate case studies; however, there is some 

repetition between the two. 
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LITERATURE REVIEW 

Geographic Pattern Exploration 

Geographic pattern exploration is a major feature of this research.  It provides 

probabilities of avalanches in a geographic, spatial manner.  Five areas of exploration 

have been utilized in the past, including exploratory data analysis (EDA), scientific 

visualization (SciVis), geographical visualization (GVis), knowledge discovery in 

databases (KDD), and geographic knowledge discovery (GKD).  Tukey (1977) described 

EDA as numerical detective work.  EDA had its roots in statistics with the fundamental 

goal of identifying interesting relationships in data (Wachowicz, 2001).  Today, EDA 

techniques are very visual in nature (Andrienko et al., 2001) and share similarities with 

scientific visualization (SciVis).  “One of the more interesting ways to define scientific 

visualization is to define it as computationally intensive visual thinking” (Rhyne, 2000, p. 

20).  GVis was an extension of SciVis with a geographic (spatial) component, while 

KDD was a formalization of the process to extract meaningful data from large databases 

(Fayyad et al., 1996a).  GKD was the geographic extension of KDD and is also a process.  

As these fields of exploration matured, they have become more interrelated.  An 

estimated 80% of all digital data has a spatial component (MacEachren and Kraak, 2001), 

so computer scientists have starting to address the need for spatial location to be 

incorporated in their modeling techniques (Han et al., 2002; Fayyad, 1996b).  Likewise, 

integrating the concepts of EDA and KDD with the spatial concepts of geography have 

become primary research agendas that have led to several journal issues completely 
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devoted to these concepts (MacEachren and Kraak, 1997; 2001; Kraak and MacEachren, 

1999). 

These fields of exploration, particularly GVis, KDD, and GKD, also share a 

primary goal of finding patterns and relationships in large spatial datasets.  GVis and 

KDD have several underlying concepts in common (MacEachren et al. 1999).  First, both 

fields involve the interaction of computers and humans and see this interaction as a 

process, attempting to capitalize on the strengths of both (Miller and Han, 2001; 

MacEachren et al. 1999; Andrienko and Andrienko, 1999; Ramakrishnan and Grama, 

1999; Fayyad et al., 1996b; Hibbard and Santek, 1989). Second, both GVis and KDD 

utilize iteration, which allows visualization of patterns with different attributes, at 

different times, or at different scales that may illuminate trends that would not be obvious 

in a static view (Andrienko et al., 2001; Ramakrishnan and Grama, 1999; MacEachren et 

al. 1999).  Iteration is also familiar to avalanche forecasters, who typically use iteration 

while forecasting to reduce uncertainty and improve forecast accuracy (LaChapelle, 

1980).  Third, these share a high interactivity between the user and computer allowing the 

user to pose “what if” questions for hypotheses generation (Gahegan et al., 2001; 

MacEachren et al. 1999).  Finally, commonalities of multiple perspectives allow the user 

to view the data at different scales, measures, or different factors (Andrienko et al., 2001; 

MacEachren et al. 1999).  

GVis is different from the other exploratory analyses in that the data must have a 

geographic component and representations of the data employ the human eye-brain 

ability to visually recognize and identify patterns.  MacEachren (1992, p. 101) defines 
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GVis as “the use of concrete visual representations – whether on paper or through 

computer displays or other media – to make spatial contexts and problems visible, so as 

to engage the most powerful of human information processing abilities, those associated 

with vision.”  In contrast, KDD is a process, consisting of data selection, preprocessing, 

transformation, data mining methods and algorithms, interpretation, and evaluation, with 

the underlying goal of extracting meaningful patterns from large databases (Fayyad et al., 

1996a).  GKD is the geographic extension of KDD (Miller, 2001), and is also a process 

of finding interesting patterns in data, but with the added complexity of geographic 

relationships being embedded in the data.  Many of the data mining methods used in 

traditional KDD assume that all variables are independent.  This is not the case with 

spatial data, where spatial autocorrelation is an intrinsic part of the system. 

Avalanche Forecasting  

Avalanche forecasting utilizes inductive and deductive reasoning along with data 

and knowledge from experience to reduce the uncertainty of the avalanche hazard for a 

given area (LaChapelle, 1980; McClung, 2002a; 2002b).  McClung (2000) groups 

avalanche forecasting into three types based on the size of the forecast area.  Type A 

forecasts provide more general information for large forecast areas at the mountain range 

scale.  Type B forecasts are more specific and are typically at the scale of a ski area or 

highway operations.  At the slope scale, type C forecasts are the most specific of the 

three, and are made by heli-guides, backcountry guides, and backcountry skiers.  
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LaChapelle (1980) categorized avalanche-forecasting data as direct stability data (Class 

I), snow-pack structure data (Class II), or meteorological data (Class III). 

Direct stability data are explicit evidence of avalanches or failures within the snow 

pack.  This type of data includes observations of avalanche events, failure of the snow 

pack without avalanches, commonly known as “whomping”, and direct stability tests 

such as rutschblock (Fohn, 1987) or stuff block tests (Birkeland et al., 1996).  Additional 

tests include the compression test (Jamieson and Johnston, 1996) and the quantified 

loaded column stability test (Landry et al., 2001).  These data are the most relevant of the 

three types of data for slope scale avalanche forecasting, and lead to the lowest 

uncertainty forecast because it is results from direct observations.  However, considerable 

uncertainty can also exist in these data (Landry et al., in press).  These data are also used 

in Type A and B forecasts, but may be predicted instead of observed. 

Snow pack structure data reveal the physical structure of the snow pack and have 

been traditionally defined as the data measured in snow pit profiles.  Some studies that 

have assessed structure have used temperature profiles (Deems, 2003), snow hardness 

profiles (Kozak et al., 2003), snow crystal size (Cooperstein, et al. in preparation) and 

type profiles (Birkeland, 1998 and Birkeland et al., 1998).  These data are used to find 

weak layers in the snow pack such as surface hoar layers, depth hoar, and near surface 

faceting, resulting in a forecast with more uncertainty than with direct stability data.  All 

three forecast types use these data, but it is often predicted for type A forecasts, and 

observed for type B and C forecasts.  Additional structure data include outputs from snow 

pack models such as SNOWPACK (Lehning et al., 1998) or SAFRAN-CROCUS-
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MÉPRA (Durand et al., 1999).  The usefulness of these data has come into question in 

recent years.  Several studies investigating the spatial variability of the snow pack have 

found high variability in the snow pack over short distances (Landry et al., in press; 

Birkeland et al., in press; Kozak et al., 2003; Birkeland, 2001; and Birkeland et al., 

1995).  This leads to the question of how relevant a snow pit is for determining the 

stability of a nearby slope.  These data become even less reliable as the scale goes from 

slope scale to mountain range scale with the inherent increase in physical distances 

between a snow pit and an avalanche path.   

Meteorological data include, but are not limited to, precipitation (new snow, snow 

water equivalent, and snow depth), wind (speed and direction, and maximum gust), 

temperature (maximum, minimum, and mean), relative humidity, and solar input.  These 

weather measurements are usually taken at multiple locations and are often automated.  

Typically, these data are used in real time and are incorporated into the day’s forecast.  

Of the three types of data, meteorological data leads to avalanche forecasts with the most 

uncertainty due to the inherent uncertainty of weather forecasts and the actual weather’s 

effect on the snow pack.  Meteorological data are typically integrated into an avalanche 

forecast by applying learned knowledge about the consequences of certain weather 

events.  The data are usually used for all three forecast types and are typically predicted 

for type A forecasts and observed for type B and C forecasts.  Meteorological data are 

most important for mountain scale, type A forecasts with many varying geographic zones 

(i.e. freezing elevations, snow accumulations, etc).  When these data are recorded and 

archived, they can be analyzed to gain intrinsic knowledge about the local area.   
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Meteorological data are well suited for avalanche research because they are directly 

related to historical avalanche data via the date.  Additionally, they are readily available 

and highly abundant.  The volume of these data is increasing exponentially as a function 

of time and amount of data being recorded, due primarily to the automation of data 

collection. Each year more data are being recorded by increasing the types of 

measurements, adding new data collection site locations, and increasing the rate of taking 

measurements.  For example, today the Bridger Teton National Forest Avalanche Center 

acquires up to 5664 daily weather measurements from automated remote sites alone.  For 

the daily forecast, the automated data are reduced to 174 pieces of summary data, such as 

minimums, maximums, ranges, and time of maximums.  Finally, 111 pieces of data are 

obtained manually, including verification of precipitation measurements and several 

subjective pieces of data, such as the amount of snow available for transport and new and 

old snow surface types for a variety of aspects and elevations.  Combining these three 

types of data results in 5949 pieces of data recorded each day.  It is nearly impossible to 

process and analyze this volume of data manually.  The methods developed by this 

research allow the application of a computer to help process these large amounts of data. 

Numerical Analysis Methods for 
Meteorological Data 

A number of techniques have been applied towards determining the relationship 

between weather and avalanches including Classification and Regression Trees (CART), 

discriminant analysis, cluster analysis, and nearest neighbors analysis.  Davis et al. 
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(1996) presented an example of CART, and Obled and Good (1980) presented an 

overview and comparison of the last three methods.   

The classification and regression tree method (Elder and Davis, 2000; Davis et al., 

1999; Davis et al., 1996; Davis and Elder, 1994) is a series of binary questions ultimately 

resulting in a yes or no answer about the possibility of an avalanche occurrence.  The 

binary questions are a tree-structured set of connected nodes.  The nodes are either a 

threshold function (i.e. Max 24 hr temp < 15.1º C) or an end node, which designates the 

classification (a day with avalanches or a day without avalanches).  The classification 

process starts at the trunk and each fork of a branch represents the next threshold function 

until a leaf (end node) is reached designating the specific classification.  To create the 

tree, a learning dataset is needed.  It is possible to perfectly predict the learning set if an 

unlimited number of nodes are used.  However, this perfect tree will not predict a test 

dataset, and needs to be pruned, which is simply limiting the number of nodes. 

 Discriminant analysis is a method to partition, or discriminate between two classes, 

in this case, a day with or without avalanches.  The variables with the most 

discriminating ability are determined and become the components of the discriminant 

axis. The discriminant axis is a multi-variable vector used to partition the two classes. 

Obled and Good (1980) use a non-parametric form of discriminant analysis to create the 

discriminant axis (first eigenvector) by using a calibration data set, which was then tested 

using a separate test dataset. 

Cluster analysis is a two-step process where days are first grouped into clusters 

typically related to snow and weather conditions.  A unique discriminant analysis is then 
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performed on each cluster to differentiate between the two classes (avalanche vs. non-

avalanche). 

Nearest neighbors is an intuitive search method to find historical days in a database 

that are similar to a day of interest, or a target day.  The target day is defined by a set of 

variables chosen as search variables, which can be weighted.  Next, a distance 

measurement is performed between the target day and all historical days.  Typically this 

distance measurement is a simple Euclidean distance.  Ordering of the historical days is 

based on this distance, and a set number (k) of nearest days becomes a subset associated 

with the target day.  This technique is called the k-nearest-neighbor classifier, first 

formalized by Cover (1967).  A probability of avalanches can be determined by the 

percentage of days with an avalanche, or a Boolean classification can be used based on 

the percentage of avalanche days (i.e. an avalanche day is a day with > 30% avalanche 

days).   

Nearest neighbor methods are non-parametric, memory-based techniques (Hand, et 

al. 2001).  They are non-parametric in the sense that they do not have any underlying 

assumptions about normality.  They are memory based because they are a direct output of 

historical data, as opposed to deterministic techniques, where a function is developed to 

describe the relationship numerically.  Dasarathy (1991) presented a historical review of 

the relevant nearest neighbor literature. 

Some of the avalanche models that use nearest neighbors optimize the variable 

weights.  Gassner et al. (2000) do this by using a local expert to set the weights (based on 

perceived importance), and then create a measure of correctness to compare different 
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weighting schemes.  Purves et al. (2002) used a genetic algorithm to determine optimal 

weights.   

Common Analysis Problems 

These methods all have drawbacks.  First, they do not account for the geographic 

component of slide paths, which experience has shown to be quite important.  Second, 

they typically do not analyze the data at the individual slide path scale, which is of 

primary importance to ski patrollers and others doing avalanche hazard reduction work.  

Finally, they usually treat a day as either a day with avalanches or without.   As a result 

of this type of classification, most are not probabilistic in nature.  This is misleading 

because some days may have many large and significant avalanches, while another day 

may have only one small slide, and yet both these days would be classified as equivalent 

‘avalanche days’.  Probabilities give much more information to the forecaster than this 

simple Boolean classification. 

Nearest Neighbor Analysis Unique 
Problems 

Although nearest neighbor techniques are the most widely used numerical 

avalanche forecasting tools, they have their own set of unique problems.  One problem is 

in determining how many of the nearest days to incorporate.  Many nearest neighbor 

programs use ten nearest historical days (Purves et al., 2002; Brabec and Meister, 2001); 

Gassner et al., 2000; Kristensen and Larsson, 1994; and Buser, 1983), but those ten days 

may or may not be good representations of the target day.   For example, if I am 
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searching for the nearest neighbors of a target day with rare conditions, its neighbors will 

be very distant and unrepresentative of target day.  In contrast a target day with common 

conditions will have closer neighbors and be more representative. 

Another possible problem is the number of variables considered in the analysis.  If 

too many variables are included, the analysis may become altered.  Gahegan (1999) 

discussed the problem with using a large number of variables - as is tempting with the 

large dimensionality (high number of potential variables) of some spatial databases. In 

these large databases, calculations quickly become unmanageable.  This is known as the 

curse of dimensionality (Hand et al., 2001).  Nearest neighbor techniques also suffer 

dimensionality problems.  As the number of dimensions (variables) gets large, the data 

become more and more spread out.  This leads to the distance of nearest neighbor 

becoming similar to the distance of the most distant neighbor, with both eventually 

approaching each other as the number of dimensions gets large (Hand et al., 2001; 

Hinneburg et al., 2000; Beyer et al., 1999).  When the distance of the nearest neighbor 

equals the distance of the most distant neighbor, the definition of neighbor becomes 

meaningless.  Beyer et al. (1999) found this to occur with as few as 10 to 15 variables 

under conditions of independent and identical distributions (IDD).  Most previous nearest 

neighbor applications for analyzing avalanche datasets use between 11 and 22 variables 

(e.g., Purves et al. (2002) used 11, Brabec and Meister (2001) used 12, Gassner et al. 

(2000) used 12 and 20, Kristensen and Larsson (1994) used 22, and Buser (1983) used 

13). 
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GEOGRAPHIC EXPLORATION AND AVALANCHE FORECASTING 

Effect of High Dimensions on Weather and Avalanche Data 

To demonstrate the possible effect of high dimensions on a weather and avalanche 

data set, I performed a simple test by varying the number of dimensions (variables), and 

calculated the ratio of the most distant neighbor to the nearest neighbor as done by Beyer 

et al. (1999).  If there was high contrast, this ratio was large.  If there was no contrast, this 

ratio was one.  The mean of each variable was used as that variable’s target value.  

Comparing the ratios of the most distant neighbor to the most similar neighbor for 

different dimensions demonstrated how increased dimensionality decreased the distance 

between the nearest and most distant neighbor.  There was a full order of magnitude of 

difference between one and five dimensions, and the difference leveled off between five 

and 20 dimensions with a ratio of around 10-15 to 1 (Figure 2). 

Differences from Traditional Nearest Neighbor Methods  

My approach differed from previous studies in both the goal and in the specific 

methodology. My primary goal was to improve avalanche forecasting by enhancing the 

forecaster’s interaction with large datasets, and by creating a tool to visualize, explore, 

and ask questions of the data in order to find spatial patterns.  The ideal tool would 

incorporate geography, be probabilistically based, and be useful for analyzing avalanche 

data at different scales (ranging from an individual slide path to the entire region).  In 
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Figure 2: Ratio of the Furthest Neighbor Distance to the Nearest Neighbor Distance.       

addition, my secondary goal was to facilitate hypothesis generation and testing which 

was used to produce the two case studies.  

My methods differed from other nearest neighbor techniques used in avalanche 

forecasting in four ways.  First, I used only three variables to combat the effects of high 

dimensionality.  This had the additional advantage of allowing me to visualize my entire 

data space in three dimensions.  Second, I did not optimize the feature weights used in 

our nearest neighbor search because I was analyzing the system at the slide path scale.  

Third, I introduced inverse distance weighting using the nearest neighbor distance to 

weight more similar days more heavily in the calculation of individual slide path 

probabilities.  This was critically important since it allowed me to calculate avalanche 
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probabilities rather than a binary “avalanche” or “no avalanche” classification.  Finally, I 

produced several visualization techniques to enable the use of multiple perspectives.  

I used only three variables to decrease high dimensional problems, simplify 

visualization, and to create a new factor, such as wind loading.  Using only three 

variables, as I did in this study, allowed me at least four times the amount of 

differentiation than if I had used five to twenty variables.  An additional advantage of 

using only three variables was the relative ease in my ability to graph, display, and 

visualize the entire data space.  This allowed me to have a mental picture of the data that 

helped understanding and decreased mental misrepresentations. Finally, the variables 

were combined to explore a factor.  In this case the factor was wind loading as defined by 

new snow, wind speed, and wind direction.  Wind loading is related to the amount and 

type of new snow, the wind speed, and the wind direction.  By analyzing only these three 

variables I was able to explore the effect of wind loading without introducing error or 

biases from other variables.  To analyze other variables, other factors may be conceived.  

For example, an avalanche forecaster would not be concerned with wet slides during a 

cold windy winter storm, and therefore would not be particularly concerned with three-

day minimum temperatures.  Likewise, in the spring, a warm windy event without 

precipitation will probably not lead to wind loading, but non-freezing temperatures over 

multiple days could lead to wet slides, and three-day minimum temperature information 

would be very important to a forecaster in this situation.  If one representation of the data 

was used for both situations, it may not be as differentiating as the two separate 

representations. 
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 I chose not to optimize weights for three reasons.  First, it was computationally 

expensive.  The measure for previous optimizing methods has been based on the presence 

or absence of an avalanche event on a given day.  In this study, I was interested in 

individual avalanche paths, and any optimization would have to be carried out on each 

individual avalanche path.  Combining this with a large database quickly makes these 

calculations difficult to manage.  Second, most nearest neighbor models define variable 

weighting as the relative importance of that specific variable.  When a weather variable is 

weighted heavily, near days have less variation around its target value.  Instead of 

viewing weighting as the relative importance of a specific variable, I viewed feature 

weighting as a method to increase segregation in that variable’s dimension.  This is why I 

weighted wind direction twice as heavily as wind speed and new snow, since I was most 

concerned with understanding the effects that wind direction had on selective wind 

loading.  Finally, I wanted to visualize the effect of weighting on nearest neighbor 

distances (another viewpoint).  A display enabled the user to compare the relative (the 

component from each variable) and the total distances for all near days.  

I used inverse distance weighting to count more similar days more heavily when 

calculating slide path probabilities for near days.  As far as I can ascertain, this was the 

first use of inverse distance weighting using the nearest neighbor distance metric for 

avalanche applications.  Using the nearest neighbor distance metric as a basis of 

weighting of nearest neighbors was first introduced by Dudani (1976).  Other work 

followed with modifications to the weighting methods (Baily and Jain, 1978; MacLeod et 

al., 1987).  My method was to create a weighted mean of the near days using a nonlinear 
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function similar to methods described by Zhang et al. (1997) and Stanfill and Waltz 

(1986). 

Applying GKD to Avalanche Data 

A number of researchers illustrate the strength of combining the concepts of GVis 

and KDD/GKD (i.e., MacEachren et al., 1999; Andrienko et al., 2001; Gahegan et al., 

2001; Wachowicz, 2001; Miller and Han, 2001).  I applied these concepts to historical 

weather and avalanche data, which were well suited to be analyzed using the concepts of 

GVis and GKD.  Slide paths have a geographic location along with geographic attributes 

(aspect, elevation, etc.) and can therefore be mapped, analyzed, and viewed with a GIS 

(Stoffel et al. 1998).  The k-nearest-neighbors technique has already been used as a 

searching technique to find similar historical days (Buser 1983; 1989) and was the data-

mining algorithm for my KDD/GKD approach.   

Recently, there have been other studies aimed towards developing ways to aid data 

visualization and hypothesis generation.  Cornice, a model developed by Purves et al. 

(2002), facilitates both of these goals, while SNOWBASE (Hägeli and Atkins, 2002) 

focuses on visualization and data storage.   

In my approach, the nearest neighbor concept was used as a search method instead 

of a classifier.  Avalanche probabilities for a given set of input variables were calculated 

for each slide path based on the set of the most similar historical days found by a nearest 

neighbor search.  Both KDD and GVis consider multiple perspectives to be very 

important, so I viewed the data three different ways.  First, a GIS representation of the 
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slide paths was used to display individual slide path probabilities.  This was the GVis 

perspective, and Evans (1997) found similar geographic representations of spatial data to 

be beneficial to the user.  Second, the mean probabilities for aspect and elevation 

categories were used to relate those geographic attributes to the associated weather 

variables, which can be viewed using a rose diagram.  Finally, a mean avalanche 

probability was calculated for all slide paths to get an overview of the set of weather 

variables.   

Iteration is also a key concept of KDD and GVis (Andrienko et al., 2001; 

Ramakrishnan and Grama, 1999; MacEachren et al. 1999).  The input values for a given 

set of weather variables for the nearest neighbor search were systematically varied to 

create a series of avalanche probability sets.   Each variation was considered an iteration, 

and each iteration was viewed using one of the perspectives described above.  More 

importantly, a feature of any perspective (individual slide path, aspect-elevation category, 

or mean probability) could have been analyzed throughout its series.  If no relationship 

existed between the weather variables and the feature (i.e. an avalanche path), the 

avalanche probability would not drastically change with changes in the nearest neighbor 

search values.  The response of a feature to changes in weather variables was a pattern or 

signature.  Finally, by visualizing probability patterns of slide paths along with viewing 

different perspectives, I attempted to discover unknown patterns, thereby increasing 

avalanche knowledge.  For example, I could discover if certain slide paths exhibit similar 

patterns.   
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GeoWAX 

I developed GeoWAX (Geographic Weather and Avalanche EXplorer) to 

implement the above ideas.  GeoWAX is not a model in the sense that models often 

require some sort of optimal calibration to produce a result.  Instead, GeoWAX is a tool 

for exploring historical data. 

Since GeoWAX was developed for the exploration of data, all levels of 

interconnectivity of the data representations are retained and available to the forecaster.  

In other words, the user can utilize the lower level data from a higher-level 

representation.  These representations include dynamic maps depicting avalanche events 

of a historical day, composite maps of near days displaying avalanche probabilities of 

individual slide paths, aspect-elevation rose diagrams displaying avalanche probabilities 

of aspect-elevation zones, graphs of nearest neighbor distances and weights, and 

representations of how avalanche probabilities change with changes in target day search 

criteria. 

 GeoWAX was used to analyze two case studies.  The first example was published 

in Cold Regions Science and Technology (McCollister et al., 2003) and explores 

relationships between geographic attributes of slide paths (aspect), weather variables, and 

the associated avalanche occurrences.  The second example was presented at the 

International Symposium on Snow and Avalanches 2003 in Davos, Switzerland and 

explores relationships between weather attributes and avalanche attributes (avalanche 

type). 
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CASE STUDY 1: EXPLORING MULTI-SCALE SPATIAL PATTERNS IN 

HISTORICAL AVALANCHE DATA, JACKSON HOLE MOUNTAIN RESORT, 

WYOMING 

Introduction 

 Avalanche forecasting utilizes inductive and deductive reasoning along with data 

and knowledge to reduce the uncertainty of the avalanche hazard for a given area 

(LaChapelle, 1980; McClung, 2002a; 2002b).  Data used for avalanche forecasting can be 

categorized as meteorological, snow pack structure, or direct stability data (LaChapelle, 

1980).  These data are typically used in real time and are incorporated into the day’s 

forecast.  When these data are recorded and archived, they can be analyzed to gain 

intrinsic knowledge about the local area.  The purpose of this paper is twofold.  First, we 

present a technique for analyzing avalanche and weather data.  Second, by implementing 

that technique using our program GeoWAX (Geographic Weather and Avalanche 

EXplorer), we investigate relationships between new snowfall, wind speed, and wind 

direction on the avalanche activity at the Jackson Hole Mountain Resort at three scales:  

1) the entire ski area (107 m2), 2) groups of adjacent slide paths and groups based on 

aspect and elevation (103 to 104 m2), and 3) individual avalanche paths (102 to 103 m2). 

A scientific understanding of avalanches, as well as knowledge of the local patterns 

of avalanche activity (gained through experience) is crucial for avalanche forecasters 

(McClung, 2002a).  The former can be taught, but the latter is much more difficult to 

teach, communicate, or even define.  For example, how new snowfall, wind speed, and 
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wind direction conceptually lead to selective wind loading and the formation of slab 

avalanches is relatively easy to teach and understand.  However, an understanding of 

which slide paths load under specific conditions of new snowfall, wind speed, and wind 

direction requires additional knowledge that may require decades of local individual 

observations and experience.  Our method utilizes historical data to help aid in the 

visualization of the data, and to generate hypotheses regarding the role that different 

meteorological variables play in creating spatial patterns of avalanche activity at Jackson 

Hole Mountain Resort. 

This study utilizes meteorological data for two reasons.  First, they are directly 

related to historical avalanche data.  Second, they are readily available and highly 

abundant.  In addition, due primarily to the automation of data collection, the volume of 

these data is increasing exponentially as a function of time and amount of daily data 

being recorded.  Each year more data are being recorded by increasing the number of 

different weather variables, adding new data collection site locations, and increasing the 

rate of taking measurements.  These typical weather variables include, but are not limited 

to, precipitation (new snowfall, snow water equivalent, snow depth), wind (speed and 

direction, maximum gust), and temperature (maximum, minimum, mean).   

A number of techniques have been and are being used to help forecast avalanches 

utilizing historical weather and avalanche data.  These include discriminant analysis, 

cluster analysis, nearest neighbors, and binary decision trees.  Obled and Good (1980) 

present an overview and comparison of the first three methods, Buser (1983, 1989) 

details the nearest neighbor method, and Davis et al. (1996) present an example of binary 
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decision trees.  Nearest neighbor and binary decision tree methods are now operationally 

used by a number of avalanche forecast operations.  Recently, other tools have been 

developed to aid data visualization and hypothesis generation.  Cornice, a model 

currently used by the Scottish Avalanche Warning Service (Purves et al., 2002), 

facilitates both of these goals.  SNOWBASE (Hägeli and Atkins, 2002), a program used 

by Canadian Mountain Holidays helicopter-skiing operation, focuses on visualization and 

data storage. 

Our methods attempt to build on this past research in three ways.  First, we 

incorporate the geographic component (i.e., the location, aspect, and elevation) of the 

slide paths.  Second, we analyze the data at the individual slide path scale, which is of 

primary importance to ski patrollers and others doing avalanche hazard reduction work.  

Finally, instead of treating a day as either a day with avalanches or without, we create a 

probability of avalanching for each individual slide path, which can be geographically 

viewed using a GIS.  Our primary goal is to create a tool to visualize, explore, and ask 

questions of weather and avalanche datasets, thereby allowing us to find spatial patterns 

and facilitate hypotheses generation.     

Geographic Visualization and Geographic Knowledge Discovery are two emerging 

fields that share our primary goal of finding patterns and relationships in large spatial 

datasets.  Both fields have several underlying concepts in common (MacEachren et al. 

1999).  First, both involve the interaction of computers and humans and see this 

interaction as a process, attempting to capitalize on the strengths of both (Miller and Han, 

2001; MacEachren et al. 1999; Andrienko and Andrienko, 1999; Ramakrishnan and 
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Grama, 1999; Fayyad et al., 1996; Hibbard and Santek, 1989). Second, iteration allows 

visualization of patterns with different attributes, at different times, or at different scales 

that may illuminate trends that would not be obvious in a static view (Andrienko et al., 

2001; Ramakrishnan and Grama, 1999; MacEachren et al. 1999).  Iteration is also 

familiar to avalanche forecasters, who typically use iteration while forecasting to reduce 

uncertainty and improve forecast accuracy (LaChapelle, 1980).  Third, high interactivity 

between the user and computer allows the user to pose “what if” questions for hypothesis 

generation (Gahegan et al., 2001; MacEachren et al. 1999).  Finally, multiple 

perspectives allow the user to view the data at different scales, measures, or even 

different concepts (Andrienko et al., 2001; MacEachren et al. 1999).  Purves et al. (2002) 

emphasize the importance of multiple perspectives for avalanche forecasting tools. 

The rest of this paper will outline the study area for our project, the methods we 

used to develop GeoWAX, and provide an example of how we used GeoWAX to 

investigate of the role of new snow, wind speed and wind direction on the spatial patterns 

of avalanching at Jackson Hole Mountain Resort at a variety of scales. 

Study Site  

This study uses historical data recorded by the Jackson Hole Mountain Resort, 

which is located on Rendezvous Mountain in the southern end of the Teton Range in 

northwestern Wyoming, USA (Figure 3).  The base elevation of the mountain is 1923 m, 

rising to a summit elevation of 3185 m.  The Jackson Hole Mountain Resort is situated at 

43º 36’ north latitude and is roughly 1000 km from the nearest moisture source (Pacific 
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Figure 3: Jackson Hole Mountain Resort at Teton Village, Wyoming, USA. 

Ocean), giving the area an intermountain climate (Mock and Birkeland, 2000).  In the 

winter, precipitation is mainly in the form of snow.  Mid latitude cyclones from the 

Pacific are intensified by orographic uplift as they encounter the western side of the 

Teton Range, especially when they travel along the relatively low and flat Snake River 

Plain to the west.  The yearly mean snowfall for the study plot at the top of the resort is 

12.8 m of snow containing 1.5 m of snow water equivalence, while the base receives 2.6 

m and 0.5 m, respectively (Kozak, 2002).  The predominant wind direction for most 

storms affecting Jackson Hole Mountain Resort is west-southwest (Birkeland et al. 

2001).  The town of Jackson, WY, has kept climatic records since 1948. The yearly mean 
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high and low temperatures are 12.1 and –5.1 degrees C, with the coldest month being 

January (-2.8 and –15.0 C) and the warmest month being July (27.2 and 4.4 degrees C). 

Methods 

Applying Geographic Knowledge Discovery 
to Historical Avalanche and Weather Data 

We applied the concepts of Geographic Visualization and Geographic Knowledge 

Discovery to historical weather and avalanche data.  Slide paths have a geographic 

location along with geographic attributes, such as aspect and elevation, and can therefore 

be mapped, analyzed, and viewed with a GIS (Stoffel et al. 1998).  The k-nearest-

neighbors technique is our data-mining algorithm, and is used to generate avalanche 

probabilities (Appendix A).  We base these avalanche probabilities, which are related to a 

given set of input variables for each slide path, on a set of the most similar historical days 

found by the nearest neighbor search.  Multiple perspectives of the data included a GIS 

representation of the slide paths to display individual slide path probabilities for each 

slide path (Figure 4), a rose diagram to relate mean probabilities for aspect and elevation 

categories to the search variables, and graphical displays of the total nearest neighbor 

distance, the inverse distance weighting, and the partial distances for the nearest days. 

The meteorological variables used for this study include new snowfall, wind speed, 

and wind direction. We are interested in these variables because the daily disruption of 

the snow pack due to skier traffic and avalanche hazard reduction activities minimizes the 

importance of older layers in the snow pack.  We also only used three search variables to 
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Figure 4: GIS Representation of the Jackson Hole Mountain Resort, Wyoming, USA. 
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minimize the potential problematic effects of high dimensionality, which can occur in 

nearest neighbor techniques using as few as 10 to 15 weather variables (Aggarwal et al., 

2001; Hand et al., 2001; Hinneburg et al., 2000; Beyer et al., 1999).   

For each of the three weather variables, we analyzed how they affected the pattern 

of avalanche activity for individual slide paths, for aspect-elevation categories, and for 

the mean avalanche probability.  After investigating the effects of the individual weather 

variables, we analyzed them together to find wind loading patterns associated with new 

snowfall.  When analyzed together, a specific pattern is created for each slide path, each 

aspect-elevation category, and for the mean avalanche probability.  This pattern is a 

specific signature for each feature and can be used to identify similarities and differences 

between similar feature types such as two slide paths.  Next, we analyzed these signatures 

to identify the scales on which these three weather variables operate.  Hägeli and 

McClung (2000) concluded that the scales of weather variables used in avalanche models 

might not be representative of the scales of natural processes in this complex earth 

system.   

Data 

The data for this project include both historical and geographic data. The historical 

data are composed of daily weather measurements and the associated avalanche activity 

from the Jackson Hole Mountain Resort, Wyoming.  The historical weather and 

avalanche data span 23 winter seasons, from 1978-79 to 2001-02, which include 3,304 

days and over 10,000 individual avalanche events. 
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By the 1978-79 season, 34 variables consisting of 204 weather measurements were 

recorded daily along with the associated avalanche activity.  These weather data included 

measurements from four precipitation sites (Rendezvous Bowl, SSTV, Mid-mountain, 

and Base, see figure 4) that recorded new snowfall, snow water equivalent (SWE) and 

total snow depth; three temperature sites recording 6:00 AM, 24 hour minimum, and 

maximum temperatures; one summit wind site (4 x 6-hour-mean speed and direction); 

and numerous subjective variables such as snow available for wind transport and daily 

warming.  Throughout subsequent seasons those original weather variables have been 

recorded along with new additional weather variables.  Today, over 50 variables, 

consisting of hundreds of individual weather measurements are recorded daily, which 

include data from five precipitation sites, four temperature sites, and three wind sites, 

most of which are remote and automatically recorded up to four times per hour.  

Precipitation measurements are manually verified at each site daily.  The historical 

avalanche data consist of 10,232 avalanche events within the ski area.  Avalanche events 

are recorded using standard U.S. methods (Perla and Martinelli, 1978), which include the 

date, slide path name, time, type, trigger, depth, U.S. size, and sliding surface as 

attributes.  These data reside at the Jackson Hole Mountain Resort. 

The geographic data sources include a one-meter resolution USGS Ortho Quad, a 

digital elevation model (DEM), and a polygonal representation of the starting zones of 

220 in-bounds slide paths.  The elevation data for the Jackson Hole Mountain Resort, in 

an Auto-CAD format (Schriber, 1998), were imported into a GIS (ArcInfo 7.0, ESRI) and 

oriented using common features in the Ortho Quad.  Three-D Analyst, an extension of 
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Arc-View 3.2 (ESRI), was used to create a 5-meter DEM from the original 10-foot 

contour data.  An aspect grid was created from the DEM using Spatial Analyst 2.0 

(ESRI).  Using the GIS, the lead avalanche forecaster for the Jackson Hole Mountain 

Resort digitized the slide path starting zones on-screen using the Ortho Quad and contour 

data for reference.  The slide path starting zones were in a polygonal (vector) format 

where each starting zone was represented by an enclosed polygon with the attributes of 

name, mean elevation, and mean aspect of each starting zone.  The mean elevation and 

aspect for each starting zone were calculated by averaging all respective grid cells 

contained in that starting zone’s polygon.   

Creating Slide Path Avalanche Probabilities 

Creating individual avalanche probabilities for each slide path is a seven-step 

process (Appendix B).  First, a set of weather variables along with a set of values is 

chosen as a basis for searching the historical database.   These criteria constitute a target 

day.  An example of a target day might be the following: new snowfall = 25 cm, mean 

wind direction = 270°, mean wind speed = 5 m/s.  Second, an optional filter is applied to 

limit the historical days used.  For example, we might only consider days with new 

snowfall greater than 15 cm but less than 35 cm.  Third, as in other nearest neighbor 

approaches (i.e. Buser, 1983; 1989), all variables and target day values are normalized by 

their standard deviation.  In step four, optional variable weights can be chosen to increase 

differentiation of a specific weather variable. 
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Some nearest neighbor models optimize the variable weights. Gassner et al., (2000) 

did this by using a local expert to set the weights and then created a measure of 

correctness to compare different weighting schemes.  Purves et al. (2002) used a genetic 

algorithm to determine optimal weights.  Though this can be useful, we chose not to 

optimize weights for two reasons.  First, it was computationally expensive for our 

analyses since we were analyzing individual avalanche paths.  Second, most nearest 

neighbor models define weight as relative importance, and therefore when a weather 

variable is weighted heavily, the nearest days have less variation around the heavily 

weighted target value.  

Step five involves the calculation of the nearest neighbor distance for all days in the 

filtered, standardized database.  This technique creates a distance measurement for each 

day in the historical database based on its similarity to the target day.  The more similar a 

historical day is to the target day, the shorter the distance measurement.  In step six 

similar days are found in the historical database by ordering the historical days by their 

nearest neighbor distances.   

In the final step, slide path probabilities are calculated based on the actual 

avalanche activity of the most similar days as defined by their nearest neighbor distance.  

First, the user chooses the maximum number of days to used. For example, if we consider 

the 100 nearest days, the number of avalanches is summed and the mean is calculated for 

each slide path over those 100 nearest days.  If one slide path had ten avalanches during 

those 100 nearest days, its avalanche probability is 10%.  Likewise, a slide path with 50 

avalanche events out of 100 nearest days has an avalanche probability of 50%.  
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Additionally, the nearest days can be optionally weighted by an inverse function of the 

nearest neighbor distance to count more similar days more heavily.  Our method creates a 

weighted mean of the nearest days using a nonlinear function similar to methods 

described by Zhang et al. (1997) and Stanfill and Waltz (1986) by weighting a day with 

the inverse of the nearest neighbor distance (NNDist) plus a zero distance value (ZDV) to 

avoid dividing by zero, all raised to the inverse distance exponent (IDE).  An IDE value 

of zero would count each nearest day equally, while a IDE value of 1 would be traditional 

inverse distance weighting.  The numerator of equation 1 is the summation of weighted 

avalanche events where days with no avalanches receive a 0, and days with an avalanche 

receive a 1.  The denominator of equation 1 is the 100% maximum probability of 

avalanching equaling the weighted summation of an avalanche event on each of the 

nearest days. 
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The resulting set of slide path avalanche probabilities allowed the creation of the GIS 

representation (Figure 4).   

Creating Avalanche Probabilities for 
Aspect-Elevation Categories   

Creating avalanche probabilities for the aspect-elevation categories is a two-step 

process (Appendix B).  In the first step, the combined geographic attributes of the aspect 

and elevation of slide paths are related to weather variables for the entire ski area rather 
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than for individual avalanche paths, with each slide path being categorized based on its 

mean elevation and aspect.  Low (1829-2286 m), middle (2286-2743 m), and high 

(2743+ m) are used as three elevation categories along with eight aspect categories (N, 

NE, E, SE, S, SW, W, NW) for a total of 24 possible categories.  Next, the mean slide 

path probabilities are calculated for all slide paths based on their aspect-elevation 

category, and are viewed using a rose diagram.   

Creating Series Signatures 

The combination of the target day and the set of resulting output (slide path 

avalanche probabilities, aspect-elevation probabilities, and the mean slide path 

probability) constitute what we define as a Nearest Neighbor Avalanche Probability 

Profile (NNAPP).  A NNAPP encapsulates the total response of the system for a set of 

search variables (Appendix B). 

The effects of weather variables on avalanche activity can be visualized as a multi-

dimensional space where each weather variable is represented by a different dimension.  

New snowfall, wind direction, and wind speed define a three-dimensional space.  To 

explore the response to changes of new snowfall, wind direction, and wind speed, a 

NNAPP is created for each set of search variables by systematically varying one weather 

variable at a time, eventually creating a NNAPP to populate each location (variation of 

variables) in the three-dimensional series space.  We call this a series signature.  The 

NNAPP attribute avalanche probability now constitutes a fourth dimension.  Two of the 
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three weather variables and an avalanche probability are graphed, visualized, and 

analyzed.  Examples of series signatures are shown below. 

GeoWAX 

We developed GeoWAX to implement the previous methods using Microsoft’s 

Visual Basic 6.0 along with ESRI’s Map Control in ArcView 8.1 to implement the 

embedded map.  GeoWAX is an interactive program to enable avalanche forecasters to 

explore their historical data and aid in visualization of data and hypotheses generation.  

The forecaster can vary the search variables used in the nearest neighbors search and the 

variable weights, and can filter the weather data based on a range of each search variable 

or any set of fixed values.  When creating the slide path probabilities, the forecaster can 

also vary the number of nearest days to be used along with the nearest neighbor distance 

weighting function.  Since GeoWAX was developed for the exploration of data, all levels 

of interconnectivity of the data representations are retained and available to the 

forecaster.  For example, when viewing a series signature, all of the NNAPPs are retained 

and can be viewed (GIS representation of slide paths, aspect-elevation rose-diagram, and 

mean avalanche probabilities).  Likewise, the actual weather and avalanche events for all 

nearest days can be viewed along with a GIS representation of a day’s avalanche events. 

Wind Loading of New Snowfall 

We chose new snowfall, wind speed, and wind direction to explore their effect on 

avalanche activity for the Jackson Hole Mountain Resort.  New snowfall (Rendezvous 

Bowl precipitation) values ranged from 0 to 35 cm in 5 cm increments for a total of 8 
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steps in the new snowfall dimension.  Wind direction (summit wind) was varied from 0° 

to 360° in 20° increments for a total of 19 steps and was weighted twice as heavily as 

new snowfall and wind speed to help differentiate the different wind direction categories.  

The wind speed dimension had three categories: 5 m/s (low), 10 m/s (moderate), and 15 

m/s (high).    All variables were normalized with their standard deviation to normalize 

distance measurements.  Days were filtered with ranges based on the target values.  New 

snowfall ranged ± 15cm, wind speed ± 4 m/s, wind direction ± 30° around their 

respective target values and the inverse of the square root of the nearest neighbor distance 

was used to weight more similar days.  A minimum of 10 days and a maximum of 100 

days were used to create the 456 NNAPPs.  Every slide path, aspect/elevation category, 

and the mean probability were available for analysis, producing individual, unique series 

signatures.  

Statistical Analyses 

The goal of our statistical analyses is to compare the pattern observed for one series 

signature (for an avalanche path or groups of paths) to another series signature.  We use 

two types of non-parametric statistics to analyze our data.  First, we use a Mann-Whitney 

U test to compare the means of two series signatures.  This test is applicable when we are 

interested in the effect of only one variable, such as wind speed.  When our primary 

interest is in the pattern observed, we use Spearman’s rho, a non-parametric correlation 

analysis similar to Pearson’s r, to compare the avalanche probabilities in one series 

signature to the other series signature.    
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Results and Discussion 

Individual Weather Variables 

Our investigation focuses on how snowfall, wind speed and wind direction affect 

the spatial patterns of avalanche activity at Jackson Hole Mountain Resort. An increase in 

new snowfall leads to an increase in the avalanche probability at all scales, from 

individual paths to the entire ski area.  More new snowfall results in more stress added to 

buried weak layers or interfaces, thereby increasing the probability of avalanche activity 

(McClung and Schaerer, 1993), and the effect of this can be seen at all scales, ranging 

from individual paths to the entire resort.     

In contrast, the effect of wind speed differs depending on the scale of observation.  

At the scale of individual avalanche paths, considerable variability exists.  Most slide 

paths exhibit an increase in avalanche probability with an increase in wind, with a few 

paths displaying a large increase, such as Buffalo Bowl, a middle elevation (2404 m) 

slide path.  The series signatures for low, moderate, and high wind situations for Buffalo 

Bowl show this large increase in avalanche probability for increasing wind speed (Figure 

5), and all were significantly different (P values < 0.001).  In contrast, some slide paths, 

such as Broadway, decrease in avalanche probability with an increase in wind; perhaps 

the higher wind speeds scours those paths.  Others, such as Cajun Couloir, increase in 

avalanche probability under certain wind directions, and decrease at other directions 

(Figure 6).  At the scale of the entire ski area there is a general increase in avalanche 

probability between low and moderate wind, but not between moderate and high wind, 
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(a) Low wind 
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(b) Moderate wind 
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(c) High wind 

 
 

 Figure 5: Series Signatures for Buffalo Bowl. 

for both the overall mean and the aspect-elevation categories.  These results demonstrate 

how much variability exists at the scale of single paths within the overall mean for the ski 

area.  
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(a) Low wind 
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(b) Moderate wind 
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(c) High wind 

 

Figure 6: Series Signatures for Cajun Couloir.  

The effect of wind direction also differs for different scales.  At the scale of 

individual slide paths, changes in wind direction change the probability of avalanche 

activity.  Although changes in wind direction also lead to changes in avalanche activity 
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for slide paths grouped by aspect and elevation, these changes are similar to each other 

and the overall mean computed for the entire ski area.  The responses of the individual 

avalanche paths may cancel each other out and “smooth” the data. 

Series Signature Patterns 

Our data exploration with GeoWAX shows that many slide paths exhibit similar 

series signatures.  Additionally, slide paths with similar signatures are often in the same 

geographic area.  Examples of grouped spatial similarity include the Cheyenne group, the 

Laramie group, and the Casper group, which gives us insight into possible scales of 

avalanche processes that may exist at the Jackson Hole Mountain Resort. 

Slide paths in the Cheyenne group include Cheyenne 3-9, The Snag, and Roadcut, 

and all exhibit similar series signatures, with high avalanche activity associated with 

winds out of 240-260º.  When the slide paths within the Cheyenne group are compared to 

each other the Spearman’s correlations (rho) range from 0.746-0.983 (p values < 0.001), 

showing strong inter-group similarities.  The series signature for Cheyenne 3 is a typical 

series signature for this group (Figure 7). 

A similar situation exists for the slide paths in the Laramie group, which include 

Laramies 1-5.  These are some of the most active slide paths on the mountain, with series 

signatures displaying high avalanche probabilities with winds from 180 to 360 degrees 

(Figure 8).  Their correlation values range from 0.801-0.962, with p values < 0.001 

(Figure 9), again showing strong similarities within the group.  There are also some 

smaller scale (individual slide path) trends.  Laramie 5, an east northeast-facing starting 
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(a) Cheyenne 3           (b) Road Cut 
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(c) Snag           (d) Cheyenne 7 

 

Figure 7: Series Signature for the Cheyenne Group in High Wind. 

zone just on the lee side of a small ridge, had its highest avalanche probabilities with 

southerly winds.  In contrast, Laramies 1-4 had their highest avalanche probabilities with 

more westerly winds.   

In contrast to both the Cheyenne and Laramie groups, the slide paths in the Casper 

group (Caspers 10, 12, 14, 20) all experience their highest avalanche activity with winds 

either more southerly or northerly than the predominant west southwest winds (Figure 

10).  Although the correlation values are all significantly correlated with p values < 

0.001, the amount of similarity is much less, ranging from 0.478 to 0.863 (Figure 11).  

The two slide paths that are most dissimilar to each other are also the farthest apart in 
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      (a) Laramie 1            (b) Laramie 2 
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      (c) Laramie 3            (d) Laramie 4 
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      (e) Laramie 5 
 

Figure 8: Series Signatures for the Laramie group in High Winds. 

distance (Casper 20 and Casper 14).  Here a sizable difference between slide paths in the 

same group exists.  Both Casper 12 and Casper 20 experience high avalanche activity 

with southerly winds while Casper 10 and Casper 14 become more active with northerly 
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Figure 9: Scatter Plot for Corresponding Series Signatures for the Laramie Group. 

winds.  We suspect this is due to the geographic location of the slide paths.  Caspers 12 

and 20 are both situated at the southern end of Casper bowl, and are leeward of a ridge 

with southerly winds.  In contrast, Caspers 10 and 14 are in the center of Casper bowl and 

may be more sheltered from southerly winds.  Similar to the Laramie group, the Casper 

group also shows some differences at the slide path scale, yet still had similarities at the 

group scale. 

After finding similar series signatures for different groups, we created a mean series 

signature for each group and compared these group means with each other using their 

series signatures (Figure 12 and 13).  The Cheyenne group and the Laramie group are 

quite similar with a correlation of rho = 0.923.  In contrast, the Cheyenne group and the 

Laramie group are more poorly correlated to the Casper group with rho values of 0.496 

and 0.591, respectively (P values < 0.001).   
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(a) Casper 20           (b) Casper 12 
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(c) Casper 10           (d) Casper 14 

Figure 10: Series Signatures for the Casper Group in High Wind. 
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Figure 11: Scatter Plot for Corresponding Series Signatures for the Casper Group. 
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(a) Cheyenne group average 
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(b) Laramie group average 
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Figure 12: Series Signatures for the Cheyenne, Laramie, and Casper Groups in High 
Winds. 
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Figure 13: Scatter Plot for Corresponding Series Signatures for the Cheyenne, Laramie, 
and Casper Groups in High Winds. 

Compare Aspect-Elevation Series 
Signatures 

Enlarging the scale of our analysis to sets of avalanche paths grouped by aspect, 

rather than by geographic location, gives us different results.  A look at four high- 

elevation aspect categories (northeast-facing, east-facing, southeast-facing, and south-

facing) shows that their series signatures appear similar with no obvious relationship to 

wind direction (Figure 14).  Further, a correlation and scatter plot analysis shows that 

they all correlate well with each other, with rho = 0.89-0.97 (Table 1; Figure 15).  Thus, 

while sizable differences exist between some groups of slide paths based on their location 

within the ski area (i.e., comparing the Cheyenne and Casper groups), those sizable 

differences do not exist between sets of avalanche paths grouped by aspect and elevation.  

The differences at the scale of individual slide paths and groups of slide paths shown in 
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(a) Northeast-facing          (b) East-facing 
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(c) Southeast-facing          (d) South-facing 

 

Figure 14: Series signatures for Four High Elevation Aspect Zones in High Winds.  

the previous section must cancel each other out when based on the mean aspect-elevation 

categories.  These results do not support a direct relationship between wind direction 

collected at a central location and slide path aspect for numerous slide paths in complex 

terrain.  
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Table 1: Similarity Among Grouped Slide Paths and Between Grouped Slide Paths. 

  
Spearman’s 
rho p (2-tailed) 

Cheyenne group 0.746-0.983 0.000 
Laramie group 0.801-0.962 0.000 
Casper group 0.478-0.863 0.000 
Cheyenne vs. Laramie 0.923 0.000 
Cheyenne vs. Casper 0.496 0.000 
Laramie vs. Casper 0.591 0.000 
NE facing vs. E facing 0.952 0.000 
NE facing vs. SE facing 0.927 0.000 
NE facing vs. S facing 0.899 0.000 
E facing vs. SE facing 0.966 0.000 
E facing vs. S facing 0.909 0.000 
SE facing vs. S facing 0.888 0.000 
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Figure 15: Scatter Plot for Corresponding Series Signatures for Four High Elevation 
Aspect Zones in High Winds. 
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Wind Correlation Between Summit and 
Raymer Wind Sites 

Our results indicate that patterns emerge due to changes in wind direction.  We 

suspect specific wind flow patterns cause the observed slide path differences.  To explore 

the possibility that specific wind flow patterns exist, we plotted the hourly mean wind 

direction for our two wind sites over two seasons (Figure 16).    When the two seasons 

were plotted separately, the same distinct pattern was observed. These distinct wind 

patterns suggest specific wind flow patterns develop around the mountain according to 

specific upper air wind directions.  Font et al. (2001) found similar results when they 

created aeolian susceptibility maps that categorized small-scale wind patterns by the 

aeolian features created by different local wind directions and then related this to a 

centralized wind station.  In their work specific centralized wind directions led to 

consistent patterns of wind erosion and deposition as determined by the maps, which is 

consistent with our findings.  

Conclusion 

Each of the three weather variables we investigated affected the avalanche 

probabilities differently.  New snowfall increases avalanche activity at all scales.  

However, it does not play a significant role in differentiating avalanche activity between 

individual slide paths.  In contrast, wind speed does have a differentiating effect, 

depending on the avalanche path location.  For example, high wind is important in the 

creation of avalanches at lower elevations, which may be due to a wind threshold needed 

for slab development that only occurs at lower elevations with high summit winds.  Of 
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Figure 16: Direction-Direction Scatter plot for the Summit and Raymer Wind Sites. 

the three weather variables, wind direction is the most important for differentiating 

individual slide path avalanche probabilities, probably because winds are being redirected 

by topography, and are selectively loading specific avalanche paths.  

The combination of our three weather variables, along with their series signature 

representations, provides new knowledge about selective wind loading at a variety of 

scales, from individual avalanche paths to groups of paths.  Analyzing series signatures 

was critical for our analyses, which resulted in a high correlation between adjacent slide 

paths and relatively low correlations between different groups of slide paths.  In addition 

to this interpolated knowledge, we can use the series signatures for a given path, or 

groups of paths, to extrapolate the wind loading effect for highly unusual situations.  For 

example, we would be much more concerned with avalanche paths in the Casper group 
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than the Cheyenne group if we had high winds out of 140-160 degrees (SSE) associated 

with a large storm. 

All of our high-elevation aspect categories exhibit similar series signatures.  At the 

scale of the entire ski resort (107 m2) there is no obvious relationship between avalanche 

activity based on aspect and wind direction.  This result is important to demonstrate that 

wind direction measured at a central, high elevation location does not necessarily directly 

relate to the specific aspects being wind loaded.  We are not implying that aspect with 

respect to wind direction does not play a role in avalanche development; clearly, at the 

scale of individual paths, wind direction is critically important.  However, since wind 

instrumentation is typically located to measure an approximation of the free air winds, 

specific topography around a given path, and not simply aspect, is more important when 

relating wind direction to avalanche activity. 
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CASE STUDY 2: EXPLORING THE SPATIAL VARIABILITY OF HARD SLAB 

AND DRY LOOSE AVALANCHES, JACKSON HOLE, WYOMING, U.S.A. 

Introduction 

The avalanche type is one of the data variables recorded for avalanche events using 

standard U.S. methods (Perla and Martinelli, 1978).  These avalanche types include hard 

slabs, soft slabs, wet slabs, dry loose, and wet loose avalanches.  The objectives of this 

study are twofold.  First, we explored the spatial distribution of the two types of dry 

avalanches - hard slab and loose avalanches - irrespective of weather.  Next, we 

incorporated three weather variables (wind speed, 24-hour maximum temperature, and 

new snow density) to explore the relationship between those three weather variables and 

the types of avalanches observed.  Understanding where different types of avalanche 

occur is important since slab avalanches are more dangerous than loose snow avalanches, 

and hard slab avalanches can be particularly difficult to predict and mitigate (Richmond, 

1994). 

Avalanches can be broken down into two main types: slab avalanches or loose snow 

avalanches (McClung and Schaerer, 1993).  Slab avalanches result from the shear 

fracture of a weak layer underlying a relatively more cohesive slab and are particularly 

dangerous because people can trigger the avalanche well below the fracture line 

(Schweizer, 1999).  In the U.S. classification, slab avalanches are broken down into dry 

and wet avalanches, and dry slab avalanches are further subdivided into either hard slabs 

or soft slabs (Perla and Martinelli, 1978).  This classification is somewhat subjective, but 
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hard slabs generally consist of harder and denser snow (greater than 300 kgm-3), and 

angular blocks of the slab tend to be preserved over long distances in the avalanche, 

depending on the ruggedness of the path.  In contrast, soft slabs are less cohesive and 

disintegrate into loose material shortly after the avalanche starts.  Perla and Martinelli 

(1978) state that if it is not clear whether an avalanche is a hard or soft slab that it should 

be classified as a soft slab. 

Loose avalanches do not release as a cohesive unit like slab avalanches.  Instead, 

they start when a small amount of snow slips out of place and moves down slope, 

encountering and entraining other cohesionless snow.  Loose snow avalanches typically 

consist of less snow than slab avalanches, they are not as large or destructive, and they 

only rarely catch people because they usually release below the trigger.  

We use 23 seasons (1978-79 to 2001-02) of historical weather with 10,232 

associated avalanche events from the Jackson Hole Mountain Resort (JHMR) to 

investigate the spatial patterns of hard slab and loose snow avalanches and their 

relationship to wind speed, new snow density, and 24-hour maximum temperature.  

Based on our field observations, we hypothesize that 1) more hard slabs are observed in 

wind affected areas and more loose snow avalanches occur in protected areas, and 2) 

more hard slabs are observed with an increase in wind and more loose snow avalanches 

are associated with cold, calm conditions.   
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Study Site 

This study uses historical avalanche and weather data recorded by the ski patrol at 

the Jackson Hole Mountain Resort which is located on Rendezvous Mountain in the 

southern end of the Teton Range in northwestern Wyoming, USA (43º 36’ N, 111˚ W).  

The resort ranges in elevation from 1923 m to 3185 m.  The Jackson Hole Mountain 

Resort is roughly 1000 km from the Pacific Ocean, its nearest moisture source, resulting 

in an intermountain climate (Mock and Birkeland, 2000).  McCollister et al. (2003) 

present a more complete description of this study site (Figure 3). 

Methods 

Spatial Distribution 

Using ArcView 8.1, we created three maps to visually analyze the total count, the 

percent hard slab, and the percent loose avalanche for each slide path.  While soft slabs 

are by far the most common type of avalanche event, we were interested in the 

occurrences of the rarer hard slab and loose avalanche events.  The maps were visually 

analyzed to determine if similar avalanche types occurred in close proximity.  Mapping 

the total count for each slide path allowed us to visualize the spatial distribution of the 

common and uncommon avalanche paths.  The percent hard slab map displayed the ratio 

of hard slabs to the total number of avalanches for each slide path.  Like the hard slab 

map, the loose avalanche map depicted the percentage of loose avalanches and was 

calculated the in the same manner as the percent hard slab map. 
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Relationship to Weather Variables 

We used methods similar to McCollister et al. (2003) to relate avalanche 

occurrences to weather variables using the program GeoWAX (Geographic Weather and 

Avalanche Explorer).  Geographic Visualization and Geographic Knowledge Discovery 

have the primary goal of finding interesting patterns and relationships in large spatial 

datasets (Miller and Han, 2001; MacEachren et al. 1999).  GeoWAX, an iterative, 

interactive program that displays multiple perspectives of the data, utilizes these 

geographic concepts, allowing the user to explore spatial historical weather and 

avalanche data for visualization, pattern discovery, and hypothesis generation.  Stoffel et 

al. (1998) were among the first to demonstrate the usefulness of Geographical 

Information Systems (GIS) to analyze avalanche data.  The data-mining algorithm we 

used is a nearest neighbor approach similar to Buser (1983, 1989); see McCollister et al. 

(2003) for a more complete discussion of GeoWAX. 

In this study, we only considered avalanche occurrences if the desired avalanche 

type occurred.  For example, consider an avalanche path that slid on 25 days out of 100 

near days.  The overall mean probability is 25%.  If three of those avalanches were hard 

slabs, 20 were soft slabs, and two were loose avalanches, there would be a 3%, 20%, and 

2% chance of encountering the respective avalanche type, and a 75% chance of the slide 

path not sliding.  Using the same example, the slide path can be characterized by the 

proportion of slides for a given avalanche type.  In this example, 12% of the avalanches 

(3% of 25%) would be hard slabs, 80% (20% of 25%) would be soft slabs, and 8% loose 

avalanches (2% of 25%).  These methods can be used to describe individual slide paths, 
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slide paths grouped by aspect and elevation, and for the mean of all slide paths based on 

specific weather variable values.   

For this study we analyzed the slide path mean for hard slabs and loose avalanches 

using wind speed, 24-hour maximum temperature, and new snow density.  Days were 

only considered if they received at least 10 cm of new snow.  All three variables were 

weighted equally for the nearest neighbor search, and near days were weighted more 

heavily using the inverse of the square root of the nearest neighbor Euclidean distance.  A 

set of series signatures (McCollister et al., 2003) was created using three different wind 

speeds (10 m/s, 20 m/s, and 30 m/s), five different 24-hour maximum temperature (-

12.2º, -9.4º, -6.7º, -3.9º, and -1.1º C), and four density (20, 60, 100, and 140 kgm-3) target 

values. 

Hard slabs and loose avalanches are relatively rare compared to soft slabs, which 

comprise the vast majority of avalanche events at the JHMR.  Hard slabs comprise 4.63% 

(474 of 10,232)) of all the avalanches in our database, and dry loose snow avalanches 

comprise 3.73% (382 of 10,232).  Because we were examining rare events, our sample 

size was effectively reduced.  To minimize this effect, we used the mean of all slide paths 

to calculate the proportion of different avalanche types for hard slabs and loose 

avalanches.   

Statistical Analysis 

We performed two non-parametric statistical tests for the overall mean of both 

avalanche types.  First, we performed a Mann-Whitney U test to compare the medians of 
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two different target variables of one variable.  For example, consider the target value 

comparison of snow with a density of 20 kgm-3 to snow with a density of 60 kgm-3.  All 

target values of wind speed and 24-hour maximum temperature would be pooled, 

creating a sample size of 15 (3 x 5) for each avalanche type.  The second non-parametric 

test was a paired comparison of medians using the Wilcoxon Signed Rank test.  The 

pairing was based on corresponding target variables of wind speed and 24-hour 

maximum temperature for the two avalanche types.  Using the target value comparison of 

20 kgm-3 snow with 60 kgm-3 snow earlier, this test would compare 15 pairs.   

Results and Discussion 

Spatial Distribution 

The frequency map (Figure 17) enabled us to spatially view the relative frequency 

of all slide paths and identify common individual slide paths and common groups of slide 

paths.  The most commonly observed slide path was Laramie 4 with a total of 620 

avalanche events.  The next most common slide path was Hanging Rock with 564 

avalanche events.  Some slide paths in similar geographic areas have similar total counts, 

but other areas do not.  Although this type of analysis is subjective in nature, it revealed 

some interesting trends.  Areas with more uniform terrain, such as the Laramie and 

Cheyenne group, seemed to have less variation in their avalanche counts.  Unlike the 

Laramie and Cheyenne groups, the slide paths in Casper Bowl and the Cirque have more 

varied terrain, cover a larger area, and have more variation in their avalanche counts.  

This would also apply to Cheyenne Bowl as a whole. 
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Figure 17:  Avalanche Count by Slide Path. 
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Similar to the frequency map, the percent hard slab map (Figure 18) enabled us to 

identify slide paths and groups of slide paths that had high and low frequencies of hard 

slabs.  There appeared to be less spatial variation (i.e., more similarity between adjacent 

slide paths) with percent hard slabs than with the total count.  In other words, even when 

two slide paths had different overall frequencies, they still had commonalities with 

nearby slide paths in regards to their proportion of hard slabs.  For example, most slide 

paths in the Cirque rarely released as hard slabs, with the few exceptions being paths that 

slid only rarely (e.g., Cirque 3S with one hard slabs out of five total avalanches).  Slide 

paths in the upper Laramie group also all have a low proportion of hard slabs.  In 

contrast, slide paths in the Cheyenne group have a higher proportion of hard slabs than 

slide paths in the cirque, and all have fairly similar proportion of hard slabs.  There also 

appeared to be some geographic location relationships.  Some of the more exposed ridges 

such as the Headwall, North Ridge, and the Far drift all have a high proportion of hard 

slabs.  Increased exposure to wind may have increased the amount of hard slabs for these 

particular slide paths.  This effect may be artificially high for slide paths in the North 

Ridge because they are typically controlled on the second day after a storm.  The 

additional time between the deposition of the snow and the avalanche mitigation 

measures might allow more time for more settlement and consolidation, thereby resulting 

in more hard slabs. 
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Figure 18:  Percentage of Hard Slabs by Slide Path. 
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We noted two other trends for paths with a higher proportion of hard slabs: some 

slide only rarely, and others are paths that have gentler slope angles.  This first 

relationship can be seen by comparing the upper Laramie group, which commonly 

avalanche, to the rarer sliding lower Laramie A and Laramie B groups.  The Laramie 

group had a low proportion of hard slabs, while the Laramie A and B groups had a higher 

proportion of hard slabs.  A group of adjacent slide paths in Cheyenne Bowl also 

exhibited this relationship.  Old Reliable and Mudslide 1 were relatively common and 

had a lower proportion of hard slabs than the surrounding Fox’s slide, mudslide 2, and 

mudslide 3 which were relatively rare and had a higher proportion of hard slabs.   The 

second apparent trend with some slide paths, such as Dean’s Slide, was a decrease in 

slope angle resulting in a higher proportion of hard slabs.  Richmond (1994) calls these 

gentler slopes “stubborn” and the combination of the gentler slope angle and the higher 

proportion of hard slabs makes them especially dangerous.  With over 21% of its 42 

avalanche events being hard slabs, Dean’s slide had the highest proportion of hard slabs 

for all slide paths.  In contrast, the adjacent Hanging Rock, with similar wind loading 

features had a much lower proportion of hard slabs (4%).  Hanging Rock is a commonly 

occurring slide path, and is steeper, and these two factors may relate to the low 

proportion of hard slabs.  Our result has practical implications.  Avalanches are 

sometimes difficult to assess on Dean’s slide path, which has caught several avalanche 

workers, and killed one experienced ski patroller. 

There are several geographic patterns for loose avalanches and these patterns are 

also often opposite to the patterns observed for hard slabs (Figure 19).  Slide paths in the 
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Figure 19: Percentage of Loose Avalanches by Slide Path.      
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Cheyenne group exhibited a relatively low proportion of loose avalanches.  In contrast, 

slide paths in the Laramie group had a higher proportion of loose avalanches.  Higher still 

is a group of sheltered slide paths in the Cirque which include Cirques 20, 20a, 21, 21a, 

21b.  All of these slide paths are further from their nearest ridge (Headwall) than other 

nearby slide paths, and are mostly sheltered by trees.  Slide paths in Casper Bowl also 

exhibit a high proportion of loose avalanches.  The ridges that had a high proportion of 

hard slabs (Headwall, North Ridge, Far Drift) all had a low proportion of loose 

avalanches.  Similar to rare slide paths with high hard slab proportions, rare slide paths 

may also have artificially high loose proportions such as Riverton, Rawlins, and Lander 

Bowls. 

Relationship to Weather Variables 

When we related wind speed, 24-hour maximum temperature, and density to the 

mean proportion for all slide paths we found significant trends for two weather 

variables with loose avalanches, and one for hard slabs.  Slide paths had a significant 

increase in the mean proportion of hard slabs with a 40 kgm-3 increase in density (Table 

2, Figure 20).  Conversely, there was not a significant trend for wind speed or 24-hour 

maximum temperature with either test.  We suspect the observed density trend may be 

due to two processes.  First, denser snow may have resulted in denser, harder slabs.  This 

may have been the case with small (class 1 and 2) new snow hard slab avalanche events.  

A second possibility is the rapid increase in weight associated with denser snow may 

have resulted in the triggering of deeper, harder layers.  This kind of hard slab avalanche 
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 Table 2: Hard Slab Avalanche Statistics 

Hard Slabs     
  Wind Speed Mann-Whitney UWilcoxon Signed Rank 
   Low vs. Moderate 0.165 0.001 
   Low vs. High 0.565 0.199 
   Moderate vs. High 0.738 0.184 
  Density     
   2% vs. 6% 0.000 0.001 
   2% vs.10% 0.000 0.001 
   2% vs. 14% 0.000 0.001 
   6% vs. 10% 0.038 0.036 
   6% vs. 14% 0.000 0.001 
   10% vs. 14% 0.000 0.001 
  Temperature     
   -12.2º vs. -9.4º 0.630 0.010 
   -12.2º vs. -6.7º 0.378 0.003 
   -12.2º  vs. -3.9º 0.242 0.004 
   -12.2º  vs. -1.1º 0.219 0.010 
   -9.4º vs. -6.7º 0.843 0.110 
   -9.4º vs. -3.9º 0.514 0.075 
   -9.4º vs. -1.1º 0.671 0.213 
   -6.7º vs. -3.9º 0.843 0.386 
   -6.7º vs. -1.1º 0.713 0.508 
    -3.9º vs. -1.1º 0.932 0.678 

 

 

event may have been classified as a hard slab due to the hard old snow layers and may be 

the case with large (class 4, 5) avalanche events.  To further explore the differences in 

size between soft and hard slabs, the mean crown depth was calculated for each 

avalanche type (loose avalanches could not be used because depth is typically not 

possible to record).  Soft slabs had a mean depth of 35 cm, while hard slab avalanches 

had a mean depth of 75 cm, and were significantly different (t-test, p < 0.000).  This large 

difference in depth between soft and hard slabs suggests that most hard slabs are larger  
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(a) Low wind 
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(b) Moderate wind 
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(c) High wind 

 

Figure 20: Increase of Density Produces Significant Increase of Hard Slab Avalanches. 

events.  Additionally, because soft slabs and hard slabs might be mis-classified, the 

difference between the two types is blurred or “evened-out”, which would result in less 

significant findings.  Despite this fact, I still found very significant differences between 

the depth of soft slabs and hard slabs. 
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Dry loose avalanches are typically new snow events in a ski area setting because 

un-skied powder snow is often preferred by skiers, resulting in daily skier compaction of 

slide paths, which disrupts layer formation.  In contrast to hard slabs, slide paths 

experienced a significant increase in the proportion of loose avalanches with both a 

decrease in wind and new snow density based on both tests (Table 3, Figure 21).  A 

decrease in the 24-hour maximum temperature also resulted in a significant increase in 

loose avalanches in eight of 10 tests using the Wilcoxon Signed Rank- test (p = 0.004- 

0.028), though significance was not found with the Mann-Whitney U test.  Low wind 

 

Table 3: Loose Avalanche Statistics 

Loose Avalanches     
  Wind Speed Mann-Whitney UWilcoxon Signed Rank
   Low vs. Moderate 0.043 0.000 
   Low vs. High 0.000 0.000 
   Moderate vs. High 0.004 0.000 
  Density     
   2% vs. 6% 0.011 0.001 
   2% vs.10% 0.000 0.001 
   2% vs. 14% 0.000 0.001 
   6% vs. 10% 0.041 0.001 
   6% vs. 14% 0.000 0.001 
   10% vs. 14% 0.098 0.001 
  Temperature     
   -12.2º vs. -9.4º 0.671 0.019 
   -12.2º vs. -6.7º 0.630 0.028 
   -12.2º  vs. -3.9º 0.114 0.004 
   -12.2º  vs. -1.1º 0.101 0.004 
   -9.4º vs. -6.7º 0.729 0.084 
   -9.4º vs. -3.9º 0.248 0.012 
   -9.4º vs. -1.1º 0.219 0.012 
   -6.7º vs. -3.9º 0.299 0.015 
   -6.7º vs. -1.1º 0.326 0.012 
    -3.9º vs. -1.1º 0.908 0.638 
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(a) Low wind 
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(b) Moderate wind 
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(c) High wind 

 

Figure 21: Decrease of Wind Speed and Density Produce Significant Increase of Loose 
Avalanches. 

speeds, low 24-hour maximum temperatures, and low new snow density resulting in 

higher proportions of loose avalanches is consistent with our observations of snow and 

avalanches.  Cold snow results in slower bond formation between new precipitation 
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particles. With low density snow there is a smaller number of bonds for a given volume 

than denser snow.  Finally, low wind results in less mechanical breakdown of 

precipitation particles and slows the formation of new bonds between particles. 

 

Conclusions 

Specific slide paths with a high frequency of avalanche activity have a lower 

proportion of hard slabs.  These slide paths may have a lower threshold of release, 

resulting in more small soft slab avalanches, which does not allow for the build up of 

snow and large hard slab avalanches.  In contrast, low frequency slide paths may have an 

increased build up of new snow between avalanche events, which can result in large  

 
events if the failure layer is a deep layer.  This is particularly true for slide paths with 

gentler slope angles.  Slide paths near each other often have similar avalanche type 

proportions.  This trend is most apparent with slide paths that have that have similar 

characteristics, such as absence or presence of trees, similar shape, aspect, and wind 

loading patterns.  Slide paths that rarely slide have low sample sizes.  Rare events have 

the potential to be biased by random variation, and this randomness can have a large 

impact on ratios for individual slide paths.   

Our results of high-density snow leading to increased proportion of hard slabs, and 

low wind speeds and cold, light density snow leading to a higher proportion of loose 

avalanches, are not surprising.  However, since this matches well with field observations, 

these results do help confirm the validity of our methods. The broader impact of our work 
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is that these same methods can also be used to explore relationships between other 

avalanche event attributes (i.e., depth, sliding surface, trigger, run-out distance) and 

specific weather variables.  Similarly, the spatial component of the slide paths (aspect, 

slope, elevation, tree-cover, and distance from ridge) could also be incorporated. 
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CONCLUSIONS 

This thesis presented two case studies to help verify the new methods created in 

developing GeoWAX.  The first case study related patterns of avalanching to weather by 

investigating the effect of new snowfall, wind speed, and wind direction on the spatial 

location of avalanche formation at Jackson Hole Mountain Resort.  New snowfall 

increased avalanche activity at all scales.  However, it did not play a significant role in 

differentiating avalanche activity between individual slide paths.  Adjacent slide paths 

often behaved similarly with respect to wind loading, and there was no direct relationship 

between wind direction and the aspect of wind-loaded slopes.  These results suggest that 

different wind directions result in specific repeatable patterns of wind loading, but those 

patterns are not as simple as westerly winds loading east-facing slopes.  Instead, specific 

avalanche patterns likely result from the interaction of free air winds with complex 

topography resulting in path specific patterns of wind loading. 

The second case study builds on the methods of the first and relates weather to 

avalanche types by exploring the spatial variability of hard slab and dry loose avalanches 

occurring at the Jackson Hole Mountain Resort over the last 23 seasons.  These avalanche 

types are characterized with respect to their geographic location and associated weather 

conditions. It is important to understand where the different types of avalanches occur 

and under what weather conditions.  Slab avalanches are much more dangerous than 

loose avalanches because slab avalanches are often triggered well down slope of the 

crown, and therefore are much more likely to catch the person that triggered the 

avalanche. I analyzed these data with and without the incorporation of three weather 



 
 
 

 
 

 
 

71 

variables (wind speed, 24-hour maximum temperature, and new snow density).  Hard 

slab avalanches increased significantly with increasing density and loose avalanches 

increased with decreases in temperature and new snow density.  Specific slide paths with 

a high frequency of avalanche activity have a lower proportion of hard slabs, while low 

frequency slide paths have a higher proportion of hard slabs; slide paths near each other 

often have similar avalanche type proportions. 

Both case studies confirm inherent knowledge about avalanches that forecasters 

have learned through experience. In doing so, these results help to verify the methods 

developed in the GeoWAX program.  The greatest contribution of this project is that the 

techniques used in developing GeoWAX have been shown to be useful in visualizing, 

exploring, and analyzing both geographic and avalanche attributes by using a 

combination of a traditional meteorological forecasting technique (Nearest Neighbors) 

with Geographic Knowledge Discovery concepts.  The combination has produced 

visualization tools that are useful in four ways (Figure 22).  First, the tools can be used 

for research to better understand the dynamic spatial and temporal pattern of snow and 

avalanches under a variety of weather conditions. Second, GeoWAX could be used for 

daily forecasting, specifically for Type B forecasts (ski areas and highway operations).  

Third, these tools could be used to help refresh the memory of seasoned avalanche 

professionals for specific areas.  Finally, GeoWAX could be used as an educational tool 

for new avalanche professionals with little or limited experience for a specific forecast 

area. 
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Figure 22: Example of GeoWAX. 

Project Difficulties and Recommendations for the Future 

Digitizing Historical Data 

One of the biggest hurdles for this project was managing the massive amounts of 

data.  The first difficulty was digitizing the data.  At the onset of this project all of the 

data were still in a paper format.  Specific programs were developed to facilitate data 

entry using Microsoft Access. I recommend that ski areas, highway departments, and 
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other snow safety operations that collect this type of data immediately initiate the process 

of digitally archiving the data, even if they are not currently analyzing the historical data. 

Naming Issues 

The next hurdle was to create a consistent naming format for the slide paths.  

Twenty-three years of historic data recorded by many different people led to multiple 

names for many of the slide paths.  Originally, all of the known slide paths were named 

with a group and number (i.e. Laramie 4).  However, today many of the slide paths have 

been renamed.  Some of this renaming was done for ease of interpretation, such as 

Laramie 23 becoming Alta 3.  Others have been renamed after a ski patroller has been 

caught by a specific avalanche, such as Dean’s slide, Jeff’s slide, Frosty’s slide, and 

Cooke’s Knob.  Finally, poor spelling and typos introduced a lot of problems.  For 

example, AMP ROCKS, amp. Rock, AMP. ROCKS, AMPHITHEATER ROCKS, 

AMPHITHEATER ROCK, AMPHITHEATRE RCKS all designate Amphitheater Rocks.  

In this study I used 188 slide paths that were spelled 3566 different ways.  To work 

through this problem I again created specific programs to help deal with the naming 

convention.  It is recommended that a consistent naming scheme be developed and 

adhered to.  Ideally, if the data were being archived digitally, the avalanche events would 

be archived by selecting slide paths from a list instead of being manually entered, which 

would eliminate spelling and typing issues. 
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Accuracy of Historical Data 

A third problem was the accuracy of the original data.  This is usually human-

caused error.  Typically, the avalanche forecaster diligently records the data.   However, 

these avalanche data are relayed to the forecaster by the individual ski patrollers, creating 

an opportunity for miscommunication.  Large avalanches almost always get 

communicated.  However, smaller avalanches, particularly class 1 avalanches, are not 

always communicated, due to their high abundance.  I recommend that snow safety 

operations implement a standard protocol where all avalanche workers would enter their 

own data immediately after avalanche control, which would then be rechecked by the 

forecaster before becoming part of the permanent record.  

Accuracy of Geographic Data  

The final potential problem is the accuracy of the geographic data.  The 5-meter 

Digital Elevation Model that was used was created from a 10-foot contour map created 

by the Engineering Department of the Jackson Hole Mountain Resort.  Without these 

data, I would have had to use a 10-meter or 30-meter USGS DEM.  As the grid size 

increases, it becomes smoothed and less accurate, especially for smaller slide paths.  This 

becomes critical when creating rates of change, such as slope or aspect.  Slope is even 

more problematic than aspect because aspect has of range of 360º, while slope has a 

range of only 90º.  Making matters even more complicated is that the critical range of 

avalanches is between 30º and 45º, which creates a practical range of only 15º for slope. 

It is recommended that a larger scale map be developed for ski areas or where forecasts 
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are being made, and that careful analyses be done in utilizing the slope and aspect data.  

Perhaps a secondary check of these accuracies should be a part of the standard use of 

these tools. 

Ideas for Future Research 

There are many research possibilities using the current functionality of GeoWAX 

by simply varying which variables to use in nearest neighbors searches.  Climatic studies 

could also be performed.  These include investigating the role of El Niño years versus La 

Niña years on the pattern of avalanches, or how the patterns of avalanching change for 

different seasonal classifications (coastal, intermountain, or continental) for a specific 

location using the scheme developed by Mock and Birkeland (2000).   

There are also at least three research topics associated with nearest neighbors.  First, 

should rare target days and common target days be handled the same way?  This reflects 

on what are the optimal number of days, and are they always the same?  A second 

possible research topic is the use of r-nearest neighbors versus k-nearest neighbors.   In 

this study I used k-nearest neighbors, which is a fixed number of nearest neighbors.  The 

r-nearest neighbors technique finds all of the nearest neighbors in a distance radius r, and 

all neighbors within this radius are used.  This approach might be a solution to the first 

problem, but would lead to the question of the optimal r.  The third nearest neighbor 

research possibility would be to explore different distance measurements.  One in 

particular is the manalohobis distance, which incorporates covariance between variables.  

This would be particularly important when using highly correlated variables such as snow 
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water equivalence and new snow.  Other distance measurements include varying the 

power of the individual variable distance differences.  For example, the Euclidean 

distance is squared, but other exponents could be used, such as one, or even less than one. 

Finally, the techniques in the case studies could be combined to relate geographic 

attributes to avalanche attributes.  For example they could be use to address the questions 

of whether wet slides are more prevalent on sunlit aspects or lower elevations, or are 

loose avalanches more prevalent on steeper slopes. 

In summary, this research has produced many contributions to both the snow 

science community and the emerging field of Geographic Knowledge Discovery.  This 

work: 

• Combined variables to form a new factor, such as wind loading, which cannot be 

directly measured. 

• Developed new methods to manage, explore, and analyze large weather and 

avalanche data sets, which will become much more common in the future. 

• Introduced the benefits of Geographic Knowledge Discovery for the snow science 

community via the creation of an iterative tool that demands high interaction 

between the user and the computer by using multiple perspectives of the data to 

take advantage of natural pattern recognition ability of human beings. 

• Provided a simplified system for analyzing ski area data, resulting in fewer 

confounding factors and more direct information on the specific processes under 

evaluation. 
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• Introduced of the potential harmful effects of using high dimensions in nearest 

neighbor searches with use of weather and avalanche data sets. 

• Introduced the use of inverse distance weighting for nearest neighbors distance 

metric with the use of weather and avalanche data sets. 

• Provided a probability analysis at the slide path scale, which produces spatial 

patterns of avalanche activity. 

• Created a tool that can be used to test other hypotheses, such as the changes of the 

temporal and spatial pattern of avalanches for different seasonal weather 

classifications. 

•  Provided a better tool for utilizing the available data for both avalanche 

forecasters and for the snow science community. 

• Provided a better understanding of wind loading, demonstrating the occurrence of 

patterns at different scales. 

• Provided a better description and understanding of hard slabs and loose 

avalanches. 

In the end, the major contributions of this research are twofold.  Firstly, it has 

resulted in the development of a useful operational avalanche-forecasting tool that can 

also be utilized to explore weather and avalanche datasets and to generate and test 

hypotheses.  Secondly, this work has provided new insights into processes leading to the 

development of patterns and scales of avalanche behavior.  Hopefully others can utilize 

some of the techniques developed here for further research.   
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NEAREST NEIGHBOR GRAPH DEFINITIONS 
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Generating a Nearest Neighbor Distance Between a Target Day and a Historical Day 
 

  Historical Target  
  Day Day 

Wind 3 6 
New Snow 7 3 

 

Calculating the Euclidean Distance Between Two Days 
Using Two Parameters
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The Euclidean Distance between two days using two parameters (wind and new snow) can be visualized as 
a right triangle.  The side and the base of the right triangle are the distances for the individual parameters.  
The hypotenuse is the total distance and can be calculated using the Pythagorean theorem.  The 
Pythagorean theorem states that a2 + b2 = c2, where a and b are the side and base of a right triangle, and c is 
the hypotenuse.  In this example a is the new snow distance, b is the wind distance, and c is the total 
Euclidean distance.  It is easy to expand this idea to multiple parameters.  For example, if three parameters 
are used the Euclidean distance would be a2 + b2 + c2 = d2.  This can be visualized in three dimensions as a 
diagonal between two opposing corners of a cube.  More than three parameters are difficult to visualize, but 
can easily be calculated using the general formula: Euclidean Distance = Sqrt{ Sum[ (ti - hi)2 ] }, where ti is 
the ith parameter of the Target Day and hi is the ith parameter of the Historical Day. 
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Comparing Nearest Neighbor Distances between Two Historical Days 
 

  Historical Target  Historical 
  Day Day Day 
Wind 5 8 20 
New Snow 20 10 5 
Distance 10.4   13 

Comparing the Euclidean Distance Between Two Days 
Using Two Parameters to Find the Nearest Neighbor
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Using the Pythagorean theorem, the distances from a Target Day to two Historical Days can be compared.  
The Target Day is defined as having 8 m/s average wind and 10 cm of new snow.  Historical Day 1 had 5 
m/s average wind and 20 cm of new snow, while Historical Day 2 had 20 m/s average wind and 5 cm of 
new snow.  The distances from the Target Day to Historical Day 1 and Historical Day 2 were 10.4 and 
13.0, respectively.  The distance from the Target Day to Historical Day 1 is less than the distance to 
Historical Day 2, making Historical Day 1 the Nearest Neighbor. 
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Changes in Nearest Neighbor Distance with Weighting 
 

    Non-weighted Weighted 
  Parameter Historical Target Historical Historical Target Historical 
  Weight Day 1 Day Day 2 Day 1 Day Day 2 
Wind 1 15 18 30 15 18 30 
New Snow 2 20 10 5 40 20 10 
Distance   10.4   13.0 20.2   15.6 

Comparing the Weighted Euclidean Distance Between 
Two Days 
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Often times the forecaster will want one parameter to be weighted more heavily than another.  The Target 
Day has 18 m/s average wind and 10 cm of new snow.  Historical Day 1 (Hx Day 1) had 15 m/s average 
wind and 20 cm of new snow, and Historical Day 2 (Hx Day 2) had 30 m/s average wind and 5 cm of new 
snow.  Prior to weighting Historical Day 1 is the Nearest Neighbor (distance of 10.4 vs. 13.0).  If the 
forecaster was interested in weighting New Snow twice as much as the Wind, then the New Snow 
parameter would be multiplied by two for all days (Target Day, Historical Day 1, and Historical Day 2).  
This has the effect of stretching the new snow parameter, which changes the distance measurements.  With 
the new snow parameter being weighted twice that of the wind parameter, Historical Day 2 is now the 
Nearest Neighbor (distance of 15.6 vs. 20.2). 
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Changes in Nearest Neighbors Distance when Incorporating Variance 
 

    Variance Not Incorporated Variance Not Incorporated 
  Parameter Historical Target Historical Historical Target Historical 
  Variance Day 1 Day Day 2 Day 1 Day Day 2 
Wind 5 5 8 20 1 1.6 4 
SWE 0.1 2 1 0.5 20 10 5 
Distance   3.2   12.0 10.0   5.5 

 

Comparing the Euclidean Distance Between Two Days 
Using Two Parameters with Variance to Find the Nearest 

Neighbor
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Parameter variances are used to normalize variables.  When the variance is not incorporated, parameters 
with relatively small numbers, such as snow water equivalent contribute very little to the total distance.  In 
this example, historical day 1 is closer when the variance is not used.  When the variance is incorporated, 
historical day 2 is closer. 
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Ordering Nearest Neighbors 
 

  Historical Target Day Historical Parameter Total 
  Day Values Day Values Distance Distance 
Wind A 18.0 3.0 15.0 19.2 
New Snow A 8.0 20.0 -12.0   
Wind B 18.0 22.0 -4.0 8.1 
New Snow B 8.0 15.0 -7.0   
Wind C 18.0 10.0 8.0 8.2 
New Snow C 8.0 10.0 -2.0   
Wind D  18.0 15.0 3.0 4.2 
New Snow D 8.0 5.0 3.0   
Wind E 18.0 20.0 -2.0 5.4 
New Snow E 8.0 3.0 5.0   

 

Comparing the Euclidean Distance Between Multiple Days 
Using Two Parameters to Order the Nearest Neighbors
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Near days are ordered using their nearest neighbor distance.  These days and distances will be used in 
remainder of the nearest neighbor examples. 
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Combining Near Neighbors with Historical Avalanche Data 
 

Near Day Color Distance 1/Distance Max 1 2 3 4 
Near Day D Green 4.2 0.2380952 1 0 0 1 1 
Near Day E Plum 5.4 0.1851852 1 1 0 1 1 
Near Day B Pink 8.1 0.1234568 1 0 0 0 1 
Near Day C Brown 8.2 0.1219512 1 1 0 0 1 
Near Day A Dark Blue 19.2 0.0520833 1 1 1 1 0 
Cumulative       5 3 1 3 4 

 

Slide Activity for Five Near Days
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For each of the near days, avalanche activity is summed by slide path.  The max column is the maximum 
number of slides possible for a slide path, which is also the number of days, and will be used to create a 
probability. 
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Avalanche Probability Not Using Inverse Distance Weighting 
 

Near Day Color Distance Max 1 2 3 4 
Near Day D Green 4.2 0.2 0 0 0.2 0.2 
Near Day E Plum 5.4 0.2 0.2 0 0.2 0.2 
Near Day B Pink 8.1 0.2 0 0 0 0.2 
Near Day C Brown 8.2 0.2 0.2 0 0 0.2 
Near Day A Dark Blue 19.2 0.2 0.2 0.2 0.2 0 
Cumulative     1 0.6 0.2 0.6 0.8 

 

Avalanche Probability for Four Slide paths
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When not using inverse distance weighting, the slide path avalanche probabilities are simply the number of 
occurrences divided by the maximum possible (an avalanche on all near days). 
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Inverse-Distance Weighted Slide path Avalanche Probability 
 

Near Day Color Distance 1/Distance Max 1 2 3 4 
Near Day D Green 4.2 0.238 0.330 0.000 0.000 0.330 0.330 
Near Day E Plum 5.4 0.185 0.257 0.257 0.000 0.257 0.257 
Near Day B Pink 8.1 0.123 0.171 0.000 0.000 0.000 0.171 
Near Day C Brown 8.2 0.122 0.169 0.169 0.000 0.000 0.169 
Near Day A Dark Blue 19.2 0.052 0.072 0.072 0.072 0.072 0.000 

Sum       1.000 0.498 0.072 0.660 0.928 
 

Inverse-Distance Weighted Slide Probability
 for Four Slidepaths using Five Near Days
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When weighting individual days with the inverses of the nearest neighbor distance, the days that are nearer 
(more similar to the target day) are counted more heavily.   This can be seen by comparing the effect that a 
given day has on the avalanche probability.  For example, both slide paths 1 and 3 avalanched three of five 
days, but slide path 3 has a higher probability because the avalanche activity occurred on nearer days.  
These probabilities are then be color-coded to display avalanche hazard which can then be dynamically 
displayed in the form of a map. 
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Flow Chart For Creating Inverse-Distance Weighted Avalanche Probabilities 
 

            
 
     

 
       

            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            

           

 
 
 

            
 

1) Weight the days with the inverse of 
their nearest neighbor distance. 
2) Make into a probability by dividing 
all by the weighted maximum. . 

Calculate Nearest 
Neighbors of Target Day.  

Property: Weighting 
Scheme (Wind: 1, New 
Snow: 1)  

Property: Target Day 
Wind = 18 
New Snow = 8  

Property: Slide path 
Data Table for Slide 
paths 1, 2, 3, 4  

Property: Historical 
Weather Record Set (5 
Days: A, B, C, D, E)  

Property: Historical 
Avalanche Events for 
Days A, B, C, D, E  

Find avalanche occurrences 
for the five near days and 
sum over slide paths 1 - 4 
producing a count for each 
slide path.

Method: Output avalanche probabilities for 
each slide path in slide path data table  

NNAvalancheProfile.CreateSlidepathProbabilities 
This object encapsulates data and methods for creating slide path 
probabilities.  The CreateSlideProbabilites method calculates slide path 
probabilities for a given target day using its nearest neighbors.  The 
inverse of the nearest neighbor distance weights slide activity (0 or 1) 
for the near day.  The sum of the weighted slide path activity is divided 
by its weighted maximum (all slide paths avalanche, p = 1.0) to create 
a probability.  
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APPENDIX B  

PROGRAM PSUEDO CODE 
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Variable Definitions 
 
td = The target day vector defines a set of weather variables (p) and holds a specific 

values for each weather variable. 

HxWx = The historical weather matrix is composed of j days and p weather variables. 

HxAv = The historical avalanche matrix is composed of i avalanche events and the set of 

avalanche attributes (i.e. date, type, size, etc.) for each avalanche event HxAvi. 

σ = The historical weather standard deviation vector contains the standard deviation of 

HxWxp for each weather variable p. 

i = Avalanche counter and identifier 

j = Historical day counter and identifier 

p = Weather variable vector counter and identifier  

a = Represents an aspect category. 

e = Represents an elevation category. 

nnd = Nearest neighbor distance vector (nndj is the nearest neighbor distance for jth day)  

ndm = The near day maximum is the maximum number of near days to use to calculate 

slide path avalanche probabilities. 

zdv = The zero distance value is a minimum value used to weight days that have a nnd 

equal to zero (historical day is identical to target day, or HxWxjp = tdp) to avoid 

divide by zero errors. 

GeoAv = The geographic avalanche matrix contains all slide paths with a geographic 

(GIS) representation along with their attributes (avalanche probability, mean 

starting zone aspect, and elevation). 
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pGeoAv = The probability geographic avalanche vector contains the probability vector 

from the GeoAv matrix. 

avWS = The avalanche weighted sum vector holds an inverse nearest neighbor distance 

weighted sum of avalanche occurrences for each avalanche path i.  

avWMax = The avalanche weighted maximum  holds an inverse nearest neighbor 

distance weighted sum of the maximum possible avalanche occurrences (an 

avalanche on every near day). 

ide = The inverse distance exponent allows more similar days (smaller nndj) to be 

weighted more heavily.  Values for ide are greater than zero.  An ide value of zero 

counts all near days evenly while an ide value of 1 would result in more similar 

days being weighted by their inverse nndj.  The value of ide is not limited to 

integers. 

f = Indicates that HxWx has been filtered (HxWxf). 

s = Indicates that HxWx has been standardized by its standard deviation (HxWxs). 

o = Indicates that HxWx has been ordered by its nnd (HxWxo). 

seg = Indicates that pGeoAv has been segregated by aspect category a and elevation 

category e (pGeoAvseg).  pGeoAvseg
ae

 is the subset of avalanche probabilities that 

are in aspect category a and elevation category e. 

AERD = The aspect-elevation rose diagram matrix contains the mean avalanche 

probabilities for all slide paths based on aspect category a and elevation category e 

(AERDae). 

n = number of variables p 



 
 
 

 
 

 
 

100 

vp = variation vector for variable p 

w = weighting vector 

NNAPP = The nearest neighbor avalanche probability profile is a combination of the set 

of avalanche probabilities (pGeoAv), the aspect-elevation rose diagram matrix 

(AERD), and the mean avalanche probability as defined by the target day. 

NNAPP = The nearest neighbor avalanche probability profile n-dimensional matrix 

contains a NNAPP for all variations v of variables p. 

p(v) = The set of variations (vp1-vpn) for variable p.   

GeoAviSeriesSignature = An n-dimensional matrix holding avalanche probabilities for a 

single avalanche path i (GeoAvi). 

AERDaeSeriesSignature = An n-dimensional matrix holding avalanche probabilities for 

a single aspect elevation category with aspect a and elevation e (AERDae). 

MeanAvSeriesSignature = An n-dimensional matrix holding avalanche probabilities for 

the mean of all slide path series signatures. 
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Creating Slide Path Avalanche Probabilities. 
 
Define the target day (td) with a set of weather variables p along with specific search 

values. 

td = (p1: new snow = 25 cm; p2: wind speed = 5 m/s; p3: wind direction = 270°) 

 

Apply an optional filter f to the historical weather matrix (HxWx) 

HxWxf = filter(HxWx) 

 

Calculate the standard deviation vector σ for each weather variable p (σp) in HxWxf  

Standardize HxWxf by standard deviation σ for each weather variable p so all variables 

are represented in a measurement system with σ = 1.  

For each day j (HxWxf
j) in HxWxf

For each weather variable p (HxWxf
jp) in HxWxf

j 
 

HxWxfs
jp

  = HxWxf
jp / σp

Next HxWxfs
pj

Next HxWxf
j 
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Standardize td by standard deviation σ for each weather variable p so all variables are 

represented in a measurement system with σ = 1. 

For each weather variable p (tdp) in td 

tds
p

  = tdp / σp

Next tdp

 

Calculate nearest neighbor distance (nndj) between the target day and each day in 

HxWxfn. 

For each day j (HxWxfs
j) in HxWxfs 

nndj
* = [∑pwp(tds

p - HxWxfs
jp)2]1/2 

*Note: if the variable is a direction measurement, the difference can never exceed |180º| 

(before standardization).  If a difference greater than |180º| was found, then it was 

subtracted from 360º.  This was done prior to standardization.

Next HxWxfs
j

 

Order (minimum to maximum) HxWxfs by the day’s nearest neighbor distance (nndj). 

HxWxfso = order(HxWxfs) 



 
 
 

 
 

 
 

103 

 

Calculate an avalanche probability for each avalanche path i (pGeoAvi) in GeoAv. 

For each day j (HxWxfso
j) in the first ndm days of HxWxfso 

Find all avalanches (HxAvj) in HxAv that occurred on day HxWxfso
j

For each avalanche i (HxAvij) in HxAvj that occurred on day HxWxfso
j

avWSi = avWSi + 1 / (nndj
 + zdv) ide

Next HxAvij 

avWMax = avWMax + 1 / (nndj
 + zdv) ide

Next HxWxfso
j

For each avalanche path probability i (pGeoAvi) in GeoAv 

pGeoAvi = avWSi / avWMax 

Next pGeoAvi 

 

Calculating Aspect-Elevation Rose Diagram Values 
 

Segregate avalanche path probabilities by aspect category a and elevation category e. 

pGeoAvseg = segregate(GeoAv) 
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Calculate a mean probability for each aspect-elevation category for all avalanche paths 

with aspect category a and elevation category e (pGeoAvseg
ae). 

For each aspect category a (AERDa) in AERD 

For each elevation category e (AERDae) in AERDa  

AERDae = mean(pGeoAvseg
ae) 

Next AERDae

Next AERDa

Calculating Overall Mean 
 
The mean avalanche probability for a set slide path avalanche probabilities is simply 

their mean. 

Mean avalanche probability = (ΣipGeoAvi)/ itotal

 
Creating Nearest Neighbor Avalanche Probability Profile (NNAPP) 

 
A single NNAPP is simply the combination of the set of avalanche probabilities 

(pGeoAv), the set of aspect-elevation avalanche probabilities (AERD), and the mean 

avalanche probability as defined by a specific target day (td). 

NNAPP = { pGeoAv, AERD, mean avalanche probability} 
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Creating Series Signatures 
 
Create the n-dimensional NNAPP matrix using n variables p each with vp variations. 

For each weather variable p (tdp) in td 

For each variation v (tdp(v)) of tdp   

Create NNAPPp(v) for variation tdp(v)

Next tdp(v)  

Next tdp
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Create an n-dimensional series signature for each slide path, aspect-elevation rose 

diagram, and the mean avalanche probability. 

For each weather variable p (tdp) in td 

For each variation v  (tdp(v)) of tdp   

For each slide path i (GeoAvi) in GeoAv 

GeoAviSeriesSignaturep(v) = NNAPP(GeoAvi)p(v)

Next GeoAvi

For each aspect category a (AERDa) in AERD 

For each elevation category e (AERDae) in AERDa    

      AERDaeSeriesSignaturep(v) = NNAPP(AERDae)p(v)

Next AERDae

Next AERDa 

MeanAvSeriesSignaturep(v) = NNAPP(MeanAv)p(v)

Next tdp(v)  

Next tdp 
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