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ABSTRACT

Snow microstructure significantly influences the mechanical, thermal, and
electromagnetic properties of snow. The microstructure is constantly evolving from the
time it is deposited on the surface until it sublimates or melts.  The resulting time variant
material properties make the study of snow metamorphism of fundamental importance to
a wide variety of snow science disciplines.  Dry snow metamorphism has traditionally
been classified by the thermal gradient encountered in the snowpack.  Snow experiencing
a predominantly equi-temperature environment develops different microstructure than
snow that is subjected to a temperature gradient. As such, previous research has evaluated
snow metamorphism based upon select thermal gradient dependent processes, when in
reality, there is a continuum of physical processes simultaneously contributing to
metamorphism.  In previous research, a discrete temperature gradient transition between
the two thermal environments has been used to activate separate morphological analyses.
The current research focuses on a unifying approach to dry snow metamorphism that is
applicable to generalized thermal environments.  The movement of heat and mass is not
prescribed, but is allowed to develop naturally through modeling of physical processes.
Heat conduction, mass conservation, and phase change equations are derived in a
simplified two-dimensional approach.  Each differential equation is non-linearly coupled
to the others through phase change.  The microstructural network is then discretized into
elements and nodes.  Finite difference equations are developed for the network, and
numerically solved using iterative techniques.  The finite difference model provides a
unique platform to study the influence of numerous geometric and thermodynamic
parameters relating to dry snow metamorphism.  Numerical metamorphism studies in an
equi-temperature environment agree well with established trends and published
experimental results.  A smooth transition between equi-temperature and temperature
gradient environments is defined and influencing parameters are examined.  In the
temperature gradient environment, a dominant grain theory based on crystallographic
orientation is postulated through numerical modeling, and is supported by experimental
observation.  Several specific metamorphism applications, ranging from avalanche debris
sintering to model integration in a full scale snowpack, are presented.  The
microstructural model has proven to be capable of evaluating metamorphism for a broad
range of geometric parameters and thermal environments, yet is flexible enough to
accommodate additional scenarios.  
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CHAPTER 1

 BACKGROUND AND LITERATURE REVIEW

Introduction

The snow that perennially or annually blankets temperate and polar latitudes has a

significant impact on our everyday lives.  Snow is a substance of extremes: providing

unique recreational opportunity and beauty, yet threatening the safety of individuals and

communities. Snow can paralyze major geographic regions by restricting travel, causing

property damage, and by creating life-threatening avalanche hazards.  Snowcover can

influence local as well as global climate changes (Berry,1981) due to interactions with

the atmosphere through emissive, reflected, and absorbed radiation (Warren, 1982;

Dozier et al., 1988). Snow also provides vital moisture reserves for the world.  It is

estimated that three-quarters of the world’s terrestrial water resources are currently stored

in snow and ice (Committee on Opportunities in the Hydrologic Sciences, 1991) and that

snow supplies one third of the world’s agricultural irrigation water (Stepphun, 1981).

Snow’s influence in vast and diverse areas of our world makes the study of snow

mechanics a uniquely rewarding endeavor. 
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Microstructure Significance

The formal scientific study of snow dates back to the early 1800’s (Colbeck,

1991).  It was recognized early on that the response of snow to its environment depends

upon its thermal, mechanical, and electromagnetic properties (Arons and Colbeck, 1995).

Dry snow is composed of an ice network with interstitial pores filled with a mixture of air

and water vapor.  Wet snow includes a liquid phase of water that may occupy the bond

areas or fill the pore spaces, depending upon the water content.  This unique construction

makes the microscopic details of the ice and pore spaces a major influence in snow’s

physical behavior.  The microstructure of snow (defined as structures on the scale of

individual ice grains, inter-granular bonds and pores) determines the mechanical (Yosida,

1963; Hobbs, 1965; Keeler, 1969; Yen, 1969; Kry, 1975; Gubler, 1978 a,b;  Brown,

1980; Armstrong, 1980;  St Lawrence and Lang, 1981; Adams and Brown, 1982a; Salm,

1982; Hansen and Brown, 1988; Brown and Edens, 1991; Edens and Brown, 1991;

Mahajan and Brown, 1993; Shapiro, 1997; Johnson and Schneebeli, 1999),

thermodynamic (Yosida, 1955, 1963; Colbeck 1980;  Adams and Brown, 1990; Adams

and Sato, 1993; Arons, 1994) and electromagnetic (Warren, 1982; McClung and

Schaerer, 1993) properties of snow.  The intergranular bonding of snow grains

comprising a snowcover affects the strength, viscosity, creep, thermal, optical and

electromagnetic properties (Adams et al., 2001).

Snow Metamorphism

Snow is a unique granular material.  From the time it touches the earth until it

either transitions to liquid (melts) or to vapor (sublimates), the snow microstructure is
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continually changing in a process called metamorphism.  The time-varying

microstructural quantities result in nonlinear material responses, making the study,

understanding, and prediction of snow metamorphism vital to nearly all areas of snow

science.  The critical dependence of snow properties on microstructure makes

metamorphism an extremely important area of study.  Microstructural changes were first

described and documented in detail by Paulke (1934), although casual observations of

snowpack metamorphism came much earlier (de Quervain, 1963).  In recent times,

efforts to understand the evolving microstructure in snow intensified.  The combination

of large crystal surface area to volume ratio and homologous temperature (T/Tmelt>0.9

generally) makes snow a very nonlinear and a highly temperature dependent material

(Colbeck, 1983a).  Because of the relatively warm temperatures in seasonal snow, water

vapor is free to migrate and diffuse in the pore spaces of the ice matrix.  Specific surface

areas as large as 10,000 m2/m3 (Edens, 1997) result in snow continually trying to reduce

that ratio, thereby reducing the overall surface free energy (de Quervain, 1963; Hobbs,

1965; Colbeck, 1980; Langham, 1981).

In general, we will consider two categories of metamorphism depending upon the

thermal environment.  In a snowpack where the temperature is nearly uniform,

metamorphism is termed “equi-temperature”.  If a significant temperature gradient is

applied (frequently found in alpine snow), then “temperature gradient” metamorphism

results.  Traditionally, each of these conditions has been treated as separate and distinct

since each results in a unique microstructure (Sommerfeld and LaChapelle, 1970).  Use

of the temperature environment to describe the metamorphic process is not universally

accepted.  In fact, the categorization of metamorphism has resulted in heated discussion
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and debate.  Colbeck (1980, 1982, 1983a) used crystal forms and driving forces to

describe metamorphism.  The current research reported here does not require a distinction

between the different types of metamorphism, rather it (as a preview) uses physical

processes common to both.  The resulting unified approach makes the discussion

somewhat obsolete and irrelevant.  But, in order to present past efforts in a logical

manner, the equi-temperature and temperature gradient terminology will be used with no

opinion offered on its validity.

Equi-temperature Environment. “Equi-temperature” or “radius-of-curvature”

metamorphism results when only very small microscale temperature gradients exist in a

snowpack.  The characteristic microstructure resulting from this environment is smooth

rounded grains connected by smooth reverse curvature necks.  An example is given in

figure 1 in chapter 2.  The resulting snow tends to strengthen and densify with time.  In

the absence of a macroscopic temperature gradient, ice particles are observed to sinter by

growing the bonds between the individual grains.  This sintering process is commonly

referred to as equi-temperature metamorphism.  Colbeck (1980) correctly pointed out that

truly equi-temperature metamorphism is impossible for any process involving phase

change.  Heat must flow in order for phase change to occur, thereby requiring

microscopic temperature gradients.  Colbeck (1980) introduced the term “radius-of-

curvature” metamorphism (for reasons that will be obvious later).  “Equi-temperature”

metamorphism will be used here with the understanding that some (even though very

small and highly localized) temperature gradients must exist for phase change

metamorphic processes to take place.
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There are several physical processes available for the movement of water

molecules in snow metamorphism.  Maeno and Eblnuma (1983) summarized six potential

mechanisms that contribute simultaneously to the growth of necks between sintering ice

particles: surface diffusion from a surface source (Kuczynski, 1949), volume diffusion

from a surface source (Kuczynski, 1949), vapor transport from a surface source (Hobbs

and Mason, 1964), boundary diffusion from a grain boundary source (Johnson, 1969;

Colbeck, 1998; Adams et al., 2001), volume diffusion from a grain boundary source

(Ashby, 1974), and volume diffusion from dislocation sources (Ashby, 1974).  The

question that arises is which (if any) are predominant and can any of these mechanisms

be neglected?  Several studies, theoretical and experimental, have addressed this issue.

Kingery (1960) showed ice particles brought together at subfreezing temperatures

remain together even when the unifying force was removed.  He claimed that surface

diffusion from the grain surfaces to the newly formed bonds resulted in “regelation” of

the particles.  It was previously believed that pressure melting or a liquid-like surface

layer was required for bonding, but Kingery disproved this.  Kuroiwa (1961) conducted

experiments similar to Kingery, but came to different conclusions on the mass transport

mechanisms.  Kuroiwa concluded that volume diffusion was dominant above -10°C with

surface diffusion emerging and then dominating below -15°C.  Hobbs and Mason (1964)

and Hobbs (1974) also conducted ice sintering experiments with entirely different

interpretation of results.  They brought together several sizes of uniform spheres in a

vapor-saturated environment.  They then observed particles optically and measured bond

sizes in time. Each mechanism was assumed to conform to the following law:
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where t is time, B(T) is a temperature dependent function,  rg is the grain radius, rb is the

bond radius, m and n are integers that depend upon the mass transport mechanism. Hobbs

and Mason (1964) claimed that it is impossible to experimentally distinguish (find

independent m and n coefficients) between the sintering rates of vapor, surface, or

volume diffusion.  In fact, they show similar rate dependence for each case.  Hobbs and

Mason presented convincing arguments pointing to vapor diffusion as the dominant

sintering mechanism (by four orders of magnitude) based on the size of the respective

coefficients. Maeno and Eblnuma (1983) confirmed the vapor transport dominance

except under certain temperature and geometric conditions where surface diffusion may

be significant.  The small bond size required for significant surface diffusion would be

very short-lived since the sintering rates are so high with small bonds.  As a consequence,

experiments and analysis have focused on the vapor diffusion regime.  Maeno and

Eblnuma (1983) have shown (analytically) the significance of surface diffusion when rb/

rg < 0.06, yet Hobbs and Mason (1964) didn’t report measured ratios less than 0.1.  The

sintering progressed so quickly (a few minutes), that the very small bond to grain ratios

were not visually captured. Until recently, the prevailing consensus, over at least the

previous 20 years, is that vapor diffusion is the primary sintering mechanism during

metamorphism of a macroscopically equi-temperature snow pack.  Other mechanisms are

probably at work, but at rates much lower than vapor diffusion.  The only exception is the

potential short-term contribution of surface diffusion under specific temperature and

geometrical conditions.
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Recently, grain boundary diffusion has been given more attention as a potential

sintering mechanism. Grain boundary diffusion is a sintering process that occurs at the

interface of two crystals, whereby mass migrates from the center of the contact to the

surface of the bond.  Sintering takes place when surface tension forces pull the grains

together resulting in a stress gradient from the center to the surface of the bond.  Colbeck

(1998;1997) applied a grain boundary diffusion model (Zhang and Schneibel, 1995) to

ice.  His model assumed the presence of a grain boundary stress gradient producing

molecular flux, which redistributes mass evenly onto spherical ice grain surfaces.

Intergranular necks were not considered.  Colbeck’s analysis raised the question of grain

boundary diffusion significance, but did not attempt to provide physical evidence of its

existence.  He recognized the need for better physical constants defining grain boundary

molecular mobility before the significance of grain boundary diffusion can be evaluated.

Adams et al. (2001) used a scanning electron microscope to examine bonds between

sintering ice grains.  They discovered a grain boundary “ridge” protruding into the pore at

the grain boundary surface.  This ridge is thought to result from the migration of

molecules from the bond center to the surface, providing the first physical confirmation

of grain boundary diffusion in ice. Adams et al. (2001) also presented a mass balance

analysis which brought into question the validity of grain boundary physical parameters

and, potentially, our understanding of sintering.

For the current effort, sintering due to vapor diffusion is the accepted dominant

mechanism, conforming to current data.  Colbeck (1980) suggested a process of vapor

diffusion between surfaces of different radii of curvature. He derived the vapor pressure
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over curved surfaces as a function of surface curvature through the chemical potential.

Vapor pressure over curved surfaces is given by the familiar form of Kelvin’s equation:









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

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
=

s
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where P is the equilibrium vapor pressure over the surface, P0 is the equilibrium vapor

pressure over a flat surface at a reference temperature, and ρs is the average surface

curvature.  ρs is defined by:

21

112
rrs

+=
ρ

,

where r1 and r2 are radii of curvature measured in any two orthogonal planes on the

surface separating the phases (Colbeck, 1980). Vapor sintering takes place when vapor

sublimates from a high surface energy site (a convex grain), diffuses through the pore

space and then condenses on a lower surface energy site (concave bond).  For convex

surfaces, radii are positive; conversely, radii are negative for concave surfaces.  At a

given temperature, vapor pressures over convex surfaces are greater than vapor pressures

over concave surfaces.  Molecules will sublimate from the convex surfaces, travel

through the vapor, and deposit on the concave neck between grains.  This is also the

mechanism for the rapid decay of dendritic snow particles when they initially fall on the

snowpack.  The sharp convex corners have very high vapor pressure compared to the

surrounding vapor and other surfaces.  These sharp features decay quickly and rounded

forms develop.  The same processes are responsible for the sintering of grains. This

process was described by Colbeck (1980) as “radius of curvature” metamorphism.
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Temperature Gradient Environment.  In seasonal snow, it is common for snowpack

temperature gradients to develop, resulting in “temperature gradient” or “kinetic growth”

metamorphism.  The combination of heat stored in the ground over the summer months

and geothermal warming keep the layer near the ground close to 0°C for most of the

winter season (McClung and Schaerer, 1993), yet the upper surface of the snowpack is

subjected to diurnal temperature fluctuations.  Depending upon snow depth, surface

thermal interaction and thermal penetration (both dependent upon microstructure), large

temperature gradients can develop within the snowpack.  Temperature differences

produce water vapor concentration (density) gradients within the pore space.  If a large

enough pore space is present (as is generally the case for lower density snow), a

substantial vapor flux from the warmer to colder regions develops.

Vapor can be transported through the pore by molecular diffusion or convection.

Field studies (Trabant and Benson, 1972; Sturm, 1991; Sturm and Johnson, 1991) have

shown that convection can be significant under certain extreme conditions.  Trabant and

Benson (1972) concluded convection was present because one-dimensional diffusive

models failed to account for the total observed mass transport.  Palm and Tveitereid

(1979) examined thermal convection analytically and concluded convection only occurs

in snow with strong temperature gradients and large air permiabilities.  Follow-on

diffusion models accounted for the increased flux (Sommerfeld, 1983; Colbeck, 1983a;

Gubler, 1985), and authors have generally rejected convection contributions.  Akitaya’s

(1974a, 1974b) experiments led him to the conclusion that natural convection occurred

only when snow contained very large pore spaces.  In fact, Akitaya found no convection

in natural and sieved snow samples subjected to temperature gradients 170 – 200 °C/m. 
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While the issue of convection is not clearly settled or widely agreed upon, it clearly is not

a significant transport mechanism in most commonly incurred temperature gradient

scenarios.  One exception may occur at the upper snow surface where very large

temperature gradients in low density snow develop when conditions are favorable for

surface hoar growth (Lang et al., 1984). General agreement remains for the dominance of

diffusional vapor transport for seasonal snow conditions.

The diffusion of water vapor through the interstitial pore space changes the nature

of metamorphism significantly.  A temperature gradient (and resulting vapor pressure

gradient) in the pore produces unique snow morphologies.  As the temperature gradient

increases, the snow microstructure can change from smooth rounded grains with smooth

interconnections to large, highly faceted, angular crystals with large surrounding pore

spaces and poor bonding.  Even though research on the bonding of faceted crystals is

sparse, the presence of these crystals has been attributed to lower material strength

(Bradley et al., 1977a; Armstrong, 1980; Adams and Brown, 1982) and increased chance

of avalanche release (Bradley et al., 1977b; Satyawali, 1998; McElwaine, 2000).  These

crystal forms are often referred to as facets, temperature gradient metamorphism forms,

kinetic forms, recrystallized snow, and depth hoar.

The temperature gradient required to transition from a smooth and rounded

microstructure to sharp and faceted forms is dependent upon density, grain size, pore

size, and temperature (Colbeck, 1983b).  Experimental observations generally show a

temperature gradient transition between 10 and 20 °C/m (Akitaya, 1974a; Armstrong,

1980; Colbeck, 1983a, 1983b) or >25°C/m (Marbouty, 1980).  There has been little

theoretical research on the physical rationale for this transition.  Below the transition
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temperature gradient, Colbeck (1980,1983a) showed vapor transport due to temperature

gradients quickly outpaces transport due to differences in curvature.  As the temperature

gradient increases, so does the growth rate of faceted crystals.  The process has been

conceptualized by Yosida el al. (1955) as “hand-to-hand” vapor transport.  In this

scenario, mass is transported by sublimation from the top of an ice grain, diffusion

through the pore space, then condensation on the bottom of a neighboring grain.  If the

sublimation and condensation rates for a grain are not in balance, the grain grows or

shrinks.   In the early stages, angular grains with sharp edges appear.  As metamorphism

continues, the crystals can grow parallel to the temperature gradient and can develop

large striated hollow structures.  Depending upon crystal orientation, large hollow cups or

columns may develop parallel to the temperature gradient.  As these grains develop, they

are commonly linked in large chains surrounded by elongated pore spaces, commonly

referred to as macropores (Arons and Colbeck, 1995).

Larger crystals tend to grow in low density snow with large pore spaces (Akitaya,

1974a,b).  For snow density exceeding approximately 350 kg/m3, pore spaces are very

small and the kinetic growth process is limited.  “Hard” depth hoar develops (Akitaya,

1974a,b; Marbouty, 1980) under these conditions.  Hard depth hoar crystals are

comprised of sharp angular crystals, but are considerably smaller and stronger (due to

higher degree of bonding) than classic depth hoar.

The increased avalanche danger posed by the development of depth hoar has

stimulated extensive experimental research on temperature gradient metamorphism.

Akitaya (1974a) conducted a series of depth hoar growth experiments in the laboratory

with artificial snow and in the field with natural snow.  He categorized crystals as
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skeleton or solid type depth hoar.  Solid type depth hoar grew under temperature

gradients <25°C/m while skeleton type grew under larger temperature gradients when

large air space was available.  By examining thin sections, Akitaya identified linkages in

the direction of the temperature gradient between the crystals.  Marbouty’s (1980)

experiments quantified critical parameters in temperature gradient metamorphism.  He

found crystal growth rates increasing with temperature, temperature gradient (with a

lower limit of 25 °C/m), and decreasing density (lower limit 150 kg/m3, upper limit 350

kg/m3).  His experiments confirmed Akitaya’s observations that lack of large pores

results in hard depth hoar.  The temperature gradients in Marbouty and Akitaya’s

experiments were less than 100 °C/m, yet temperature gradients near snow surfaces may

be much greater.  Fukuzawa and Akitaya (1993) conducted hoar crystal growth

experiments with temperature gradients greater than 100 °C/m but less than 300 °C/m.

These large temperature gradients can be found under a variety of conditions depending

upon radiation balance conditions.  They found linearly increasing crystal size with time

at rates allowing rapid development of large crystals.  Sturm and Benson (1997)

presented an extensive study and analysis of depth hoar in the subarctic snow.  They

observed a grain size increase of a factor of 2-3 over the winter season.  Initially, growth

rates were high, but decreased by the end of the season.  At season’s end, the entire

snowpack had metamorphosed through five different depth hoar textures.  Sturm and

Benson found layer-to-layer vapor fluxes to be ten times greater than inter-particle fluxes,

potentially explaining field measurements of constant snow density during depth hoar

formation.  Kamata et al. (1999) quantified the effects of temperature and temperature

gradient (size and direction) on crystal growth during low temperatures (-65 °C to –15
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°C) and large temperature gradients (500 °C/m).  Under these conditions, they concluded

that crystal habit was primarily dependent upon temperature and secondarily upon

temperature gradient.

Heat and Mass Modeling Efforts

Many researchers have studied snow transport modeling in the last 50 years.  The

complex nature of snow has resulted in many unique approaches including analytical as

well as numerical solutions.  From the perspective of snow metamorphism, an approach

that not only accurately accounts for heat and mass distributions, but also includes the

important influences of realistic microstructure and phase change is desired.  In their

review of snow heat and mass transfer research, Arons and Colbeck (1995) concluded

that an integrated heat and mass transfer model using realistic geometry currently does

not exist, but is needed.  The following review of past efforts is presented to frame the

importance and significance of the current research.

Bader (1939) developed a transport model between two parallel plates of ice.

This is considered one of the first attempts to model temperature gradient or kinetic

growth metamorphism.  One-dimensional vapor diffusion and mass conservation between

the plates made Bader’s study an important first step in understanding the physical

processes at work.  Giddings and LaChapelle (1962) used a similar approach but

inadvertently retained upward diffusing vapor at the next higher level (Sommerfeld,

1983).  de Quervain (1963, 1973) incorporated three different ice structures when

evaluating heat and mass flow.  de Quervain’s first structure was a series of cylindrical
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pores in the ice running parallel to the temperature gradient.  He then presented a set of

parallel plates aligned perpendicular to the temperature gradient.  His final structural

model was a combination of the first two with cylindrical channels intersected by

rectangular vapor “traps”.  These simplified geometries were clearly inadequate for actual

snow, but provided a starting point for more advanced approaches. 

The critical consideration of snow microstructure in any metamorphism research

led to many studies in the early 1980’s where differing assumptions and complexities led

to several models.  Perla (1978) recognized the importance of the granular nature of snow

and incorporated a more realistic geometry in metamorphism models.  Sommerfeld

(1983) developed a temperature gradient metamorphism model based on the evolution of

branch grains.  A “branch” grain was defined as a grain poorly connected to the ice

matrix making it favorable for phase change.  Sommerfeld formalized a process

envisioned by de Quervain (1973) whereby branch grains protruding into the warmer

pore spaces will grow while those protruding into the colder spaces will shrink.  Colbeck

(1983a) developed an analytic metamorphism theory with a geometric “enhancement”

factor between source and sink grains during hand-to-hand vapor transport.  This was the

first real step forward into meaningful microstructure modeling.  He calculated diffusion

using a potential field solution for electrostatically charged particles.  Colbeck noted that

as some grains grow faster than others and nearby sources disappear, new sources

develop in warmer parts of the snowpack.  This is a feedback mechanism whereby the

grains that initially grow rapidly would continue to grow rapidly.  He also noted that one-

dimensional diffusion under predicts crystal growth rates, an observation previously

attributed to the presence of convection (Trabant and Benson, 1972).  The onset of kinetic
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growth forms was noted from experimental data, but Colbeck’s analysis did not provide

insight into the value of the temperature gradient at kinetic growth onset.  Gubler (1985)

developed an analytic metamorphism model based on observed stereological interparticle

structures (Gubler, 1978a).  He defined chains, clusters, and end particles based on

coordination number, but was forced to identify source and sink grains during the

metamorphism process.  Gubler used an electrostatic analog with a geometric factor,

similar to Colbeck’s (1983a), but used a more realistic, measurable, microstructural

geometry.  Adams and Brown (1982b, 1983) presented a crystal growth model in a

temperature gradient environment accounting for pore size and crystal shape.  They used

excess vapor density, as a function of temperature and surface curvature, as the primary

driving mechanism.  While analytic models provide insight into physical phenomena,

they can be limited in their utility for broad-based application to variable snow

conditions.

Numerical models have been developed to explain and predict snow

metamorphism.  Christon et al. (1990) presented a 2-D finite element model with a

deforming mesh.  They developed coupled heat conduction for the ice and vapor

diffusion for the pore.  The three linear coupled differential equations resulting from

energy balance, mass conservation, and phase change boundary conditions were solved

using finite element techniques. Their results supported Yosida’s (1955) hand-to-hand

transfer analogy for temperature gradient metamorphism.  Christon et al. (1994) extended

their 2-D theory to three dimensions.  They verified the existence of a diffusive geometric

enhancement factor postulated by Colbeck (1983a) and Gubler (1985).  The finite

element solution did not include surface curvature effects, but in most temperature



16
gradient regimes, curvature may not be a significant factor (Colbeck, 1980).  Christon’s

models did use a simplified geometry, but also explored the possibility of solving

geometrically meaningful problems with coupled heat and mass transfer.  Theoretically,

one could explore realistic geometries using this approach, but it may be computationally

burdensome as the number of degrees of freedom required can become large.  Christon et

al.(1994) considered 3-D periodic cell geometries to aid in simplicity and efficiency, yet

their model still required 40,000-80,000 degrees of freedom.  They found that the

majority of computation time was spent solving the system of equations, followed by

mesh movement, flux calculations, and coefficient matrix assembly calculations.  By the

nature of the studies and discussion presented, limited computational resources were

clearly an issue for this finite element technique.

Several authors have used continuum mixture theory to describe various aspects

of a phase changing snowpack.  Morland et al. (1990) presented a four constituent

continuum theory of mixtures to describe a three dimensional natural snowpack.  They

utilized four phases (ice, water, air and water vapor) and modeled their interactions

through the mass, linear momentum, and energy conservation equations for the mixture.

Constitutive relationships for each phase were presented and retained individual phase

identity. Morland et al. (1990) related conservative law’s partial variables with the

constitutive law’s intrinsic variables.  Several reasonable simplifications resulted in

seventeen partial differential equations in terms of fifty-three independent variables.  Due

to the complexity of the general problem presented, Morland et al. (1990) did not attempt

to solve the set of equations.  Simplified one-dimensional solutions were presented by

Jordan (1991) and Bader and Weilenmann (1992).  They reduced the three-dimensional
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mixture theory by assuming lateral uniformity with only vertical gradients present,

eliminating a number of independent variables.  Bader and Weilenmann (1992) assumed

zero gas (vapor and air) velocity and neglect sensible and latent heat contributions.

Jordan (1991) also assumed no gas velocity but made provisions for heat exchanges

during phase change.  Gray and Morland (1994) improved the one-dimensional approach

by including more complete gaseous phase modeling, but eliminated two phases by only

considering ice and dry air.  The mixture theories discussed so far do not consider any

microstructural properties.  Without even the most elemental microstructural properties

such as grain, bond, or pore geometries, these approaches could not be used to predict the

metamorphism of snow.  They are useful (with various levels of success) in determining

macroscopic temperature distributions.  One significant strength to the rigor of mixture

theory is the first principles approach and lack of empirical corrections.

Adams and Brown (1989, 1990) were the first to use the mathematical discipline

of mixture theory, plus they included microstructural considerations.  They developed

three-dimensional conservation and constitutive relationships for immiscible phase

changing snow consisting of ice and vapor as the major constituents.  A consideration for

spherical grains was included, but bonds or necks were not explicitly addressed.  Adams

and Brown (1989) analyzed ideal homogenous snow then extended the approach to a

complex layered snowpack experiencing a thermal gradient (Adams and Brown, 1990).

Heat and mass flux in a snowpack with layered stratigraphy were found by numerically

solving the one-dimensional versions of their equations.  Brown et al. (1999) developed a

mixture theory for equi-temperature metamorphism with four constituents: ice grains,

intergranular ice necks, air, and water vapor.  Brown modeled snow as a distribution of
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different sized particles with each size representing a separate phase.  The theory

predicted the sintering of spherical ice grains based largely on microstructural

parameters.  The ice constituents were defined by specific unique geometrical parameters

such as grain radius, bond radius, and neck length.  Geometric assumptions lead to other

important parameters such as surface curvature.  This approach directly linked

microstructural parameters to mechanical and thermodynamic processes.  Brown et al.

(1999) were able to grow larger grains at the expense of smaller grains without explicitly

designating source and sink grains.  Intergranular necks grew at the expense of all grains,

with decreasing growth rates as sintering progressed.  The complicated mass transfer

process was highly coupled to the microstructure, leading the authors to the conclusion

that accurate textural descriptions are required in any sophisticated metamorphism

modeling.  This model has not been applied to a temperature gradient environment, but

the development was not limited to equi-temperature conditions.

The need for accurate avalanche forecasting has led to the development of several

snowcover models able to predict mountain snowpack evolution.  Most of the research

efforts described thus far were focused on scientific understanding of snow processes.

The models used in avalanche forecasting have an “operational” focus.  The goal of these

models is the prediction of snowcover response to commonly available inputs, such as

measurements from remote meteorological stations.  SNTHRM (Jordan, 1991) was

developed to find temperatures within the snowpack and particularly at the surface.  The

model incorporated snow layering and boundary conditions determined by

meteorological instruments, but did not address snow microstructure in any detail.

CROCUS (Brun et al., 1989) began as a mass and energy balance model able to predict
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settlement, phase change, density, and temperature profiles.  Early versions of CROCUS

did not include detailed reference to microstructure.  In later versions (Brun et al., 1992),

empirical metamorphism laws were incorporated in CROCUS to calculate “dendricity”

and “sphericity” of the snow.  While the heat and mass balances were physically based,

predictions of viscosity, thermal conductivity, settling, grain size, and grain shape

remained largely empirical, potentially limiting the model’s application.  The Swiss

Federal Institute for Snow and Avalanche Research developed one of the more

sophisticated operational models, SNOWPACK.  SNOWPACK used a lagrangian finite

element approach to solve for heat and mass transfer, stresses and strains in snow

(Lehning et al., 1999).  Automated weather stations located at 45 points in the Swiss Alps

provided SNOWPACK with upper surface boundary conditions (Brown et al., 2000) for

finding temperatures and settling rates.  Early versions of SNOWPACK used the same

empirical metamorphism models as CROCUS, but recently, new physically based models

have been added.  The addition of Adams and Sato’s (1993) microstructural effective

conductivity model improved the heat conduction capability.  Results from Brown et al.

(1999) mixture theory were used to predict the metamorphism of equilibrium forms in an

equi-temperature environment (Brown et al, 2000).  This enhancement allowed

SNOWPACK to calculate grain and bond growth rates during small temperature gradient

conditions.  The mixture theory calculations proved too burdensome to use in an

operational program, so equations defining grain and bond growth as a function of grain

size, bond size, density and temperature were generated from mixture theory and

incorporated into SNOWPACK.  When a significant temperature gradient (>10°C/m) was

present, a microstructurally based heat and mass flux model was used (Satyawali, 1999;
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Brown et al., 2000; Baunach et al., 2001) to calculate grain and bond growth rates.  Each

metamorphism model in SNOWPACK was applicable to different environments, and was

completely different from the other.  There was not a smooth or continuous transition

between the two metamorphism models.  Brown et al. (2000) commented “Future

research should be directed at developing an all-encompassing theory that will work

continuously from temperature gradients ranging from 0°C/m to higher than 100°C/m.”    

Lundy et al. (2000) gathered weather station information from the Bridger Range

near Bozeman, Montana during a validation study of the Swiss SNOWPACK model.

The weather station was established to provide boundary conditions for the model, as

well as to provide temperature measurements through the snow depth.  Weekly on-site

observations of snowpack stratigraphy were performed.  They found SNOWAPCK

performed well for predicting internal temperatures, reasonably well for predicting

density, and poorly at predicting grain size and shape.  While some of the grain size error

was attributed to the model, Lundy et al. (2000) pointed out the inherent accuracy issues

associated with field observations, namely, that no standardized field observation

technique currently exists.  

Summary

Snow metamorphism modeling originated to explain the complicated time-

varying snow structures found in natural snowpacks.  Experimental investigations have

provided some explanation as to when certain morphologies are present, but do not
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always answer the fundamental physical questions of why they happen.  Early

investigations of heat and mass transfer utilized simple models to explain these complex

processes with varying degrees of success.  As the research matured, the importance of

microstructure in nearly all aspects of snow performance became evident.  As new

studies are published, many point to the need for incorporating microstructure into any

physical model.

Snow microstructure has been traditionally categorized by the temperature

environment.  Two major microstructural categories, with grains defined as smooth and

rounded or sharp-edged and faceted, have been the focus of numerous experimental and

theoretical studies.  Past efforts have, in general, focused on grain structure with little

discussion of the intergranular bonding. Theories have been developed that adequately

explain the physics of snow sintering in an equi-temperature environment and faceted

grain development in the presence of a temperature gradient.   To date, no one has

presented a unified theory of metamorphism that includes detailed microstructure yet is

not restricted by the temperature environment.  In fact, Arons and Colbeck (1995)

comment “we still lack a model that integrates fundamental elements of geometry and the

transfer of sensible and latent heat in a physically sound inductive model.”  Several of the

studies allow insight into physical processes but do not lend themselves to inclusion in an

operational model used for snowpack evolution calculations.  A unifying conservation

theory that accounts for the time varying microstructure yet is portable to snow prediction

models is desired.

Research Objective
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The objective of this research is to develop a unifying dry snow microstructure

metamorphism theory that accounts for important physical parameters and processes yet

is applicable in general thermal environments.  The approach should be consistent with

previous research and be supported by experimental data.  The next chapter identifies the

key parameters and processes and then proposes a numerical approach to examine snow

metamorphism.
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The smooth and rounded features of the grains and interconnections are readily

apparent.  This morphology is commonly referred to as the equi-temperature

(Sommerfeld and LaChapelle, 1970) or equilibrium form (Colbeck, 1983b).  The grains

are generally smooth convex structures with inter-connecting concave necks bonding

neighboring grains.  The pore space is clearly visible surrounding the grains and necks.

Grain boundaries, also referred to as bonds, are visible at the center of the necks.  To

model the ice geometry, some simplifications are made.  First, the grains for this

morphology are assumed to be spherical.  There may be several different sized grains, but

the equilibrium forms are assumed perfectly round.  A universally accepted intergranular

neck definition does not exist.  Therefore, smooth concave necks spanning either side of

Ice Grain

Grain Boundary or Bond

Pore Space

Intergrannular
     Necks

Figure 1.  Scanning electron microscope image identifying typical microstructural
features of snow that has been kept under macroscopically isothermal conditions.
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crystal bonds are assumed to make the interparticle connections.  Edens (1997) developed

a stereological approach defining the grain-neck transition where the surface curvature

changes sign.  Geometric definitions used here are similar to Brown et al. (1999).

Figure 2.  Basic equilibrium form grain and neck geometry

Figure 2 illustrates the basic equilibrium form of grain and neck definitions. The

spherical grain radius is denoted by rg, the bond radius is rb, the concave neck surface

radius of curvature is rn, and the neck half length is given by nl.  The convex to concave

surface transition separates necks and grains. Important relationships can be obtained

from simple geometric relationships from figure 2.  The grain radius and bond radius, a

measure of bond maturity, will be assumed to be known initial conditions.  It is then

desirable to represent other geometric quantities in terms of grain and bond radii.    From

figure 2
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The neck surface radius is then given by
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The neck length is related to bond and grain radii by
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The neck surface mean radius of curvature, ρs, is given by (Colbeck, 1980)
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ρ
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In equations (1)-(4), all the values of radii of curvature are assumed numerically positive.

Later, when calculating vapor densities over curved surfaces, concave radii of curvature

will be numerically negative.  It is interesting to note that when rb= rn, the curvature terms

cancel out and the neck surface is equivalent to a flat surface.  Using equation (2), it can

be shown that this happens when rb/rg=2/3.  For two equally sized grains of this

geometry, as the bond to grain radius ratio approaches 2/3, the neck surface curvature

approaches zero.

With individual grains and their interconnecting necks defined, a macroscopic

geometric model is required.  The complex structure of snow makes the development of a

realistic geometric model with general application difficult.  For snow in an isothermal

environment, it is assumed that the material is macroscopically isotropic, ie, the

microstructure does not depend upon the observation direction.  When a temperature

gradient is applied, metamorphism can result in directionally oriented microstructure.

During long exposure to significant temperature gradients, channels or mesopores
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develop parallel to the temperature gradient.  Ice chains may also develop with large,

striated, faceted grains appearing.  For depth hoar crystals and pore channels to develop,

the temperature gradient must be large (>10°C/m), the density below 350 kg/m3, and

sufficient pore space available for vapor transport and grain growth (Akitaya, 1974a;

Marbouty, 1980), although channel development has been observed in higher density

snow (Adams et al, 1994).  Due to this preferred orientation, it is assumed that the snow

geometric properties are symmetric with respect to an axis of rotation about the

temperature gradient direction, making the problem transversely isotropic.  Symmetry is

assumed in any plane perpendicular to the temperature gradient.  To model equi-

temperature and temperature gradient environments, a microscopic geometry is used by

linking a large number of ice spheres and necks together with the geometry specified in

figure 2.  The geometry shown in figure 1 is modeled by arranging the grains, bonds, and

pore spaces into a vertical configuration with symmetry assumed in the transverse

directions.  The differential equations defining the metamorphic processes of interest will

be developed later in this chapter, but as a preview, a finite difference solution will be

presented.  As a result, a microstructural definition of elements and nodes is desired.  The

element discretized ice and pore geometry is shown in figure 3, nodal definitions will be

presented when required by the numerical solution.
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In figure 3, element boundaries are defined at the transition between spherical

grains and concave necks.  Pore elements are defined by rotating the rectangular

crossection in figure 3 about the ice centroidal axis leaving cylindrical pore.  Each grain

and neck represents an individual ice element.  The pore is divided into similar elements

having the same vertical dimension as each ice element.  Element vertical dimensions are

given by grain radii and neck lengths defined in figure 2.  The ice and pore elements are

numbered sequentially in the y direction. The number of grains and necks must be odd

since a neck unconnected to a grain is not allowed.  The microstructure discretization in

figure 3 may be stacked vertically to any desired dimension.  For equi-temperature

conditions, this model represents a “straightened-out” configuration of grains, necks and

Ice
Elements

Pore
Elements

i+2

i+1

i

i+2

i+1

i x

y

Figure 3.  Grain, neck, and pore discretized elements.
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pore spaces identified in figure 1.  If temperature gradient conditions prevail, this

geometry provides the base ice network for the growth of faceted grains and bonds.  The

temperature gradient will be applied parallel to the y direction in the geometric model.

Satyawali (1999) presented a similar geometry for simulating bond growth in a

temperature gradient environment.  He defined cells consisting of two grains connected

by one neck with a vertical pore separating each cell.  No cell connections extended in

the direction of the temperature gradient.  The ice geometry is well defined at this point,

but only one dimension of each pore element has been defined.  While the height of each

pore is defined by grain radius and neck length, the other dimensions still remain

undefined.

Figure 4. Pore dimensions.

Ice Pore

Symmetry Plane

x

rg (i)

rb (i+1)

rg (i+2)

w(i)

w(i+1)

w(i+2)

x

y



30

Since the problem has been assumed isotropic or transversely isotropic

(depending upon thermal environment), the model in figure 3 has symmetry about the

vertical y axis.  Figure 4 represents one model used to calculate pore dimensions.

The distance from the ice center to the symmetry plane is x.  The symmtery plane

is defined to empahsize that these model elements may be repeated indefinately.  Each

pore element is then assigned a width, w(i), based on the distance from the ice surface to

the symmetry plane.  If the ice geometry is known, the total pore volume is given by the

snow density.  The snow density and pore, ice volumes can be related by




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
−==

total
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ice
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ice
icesnow V

V

V

V
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where ρsnow is the snow density, ρice is ice density, Vice is the total ice volume in the

model, Vpore is the total pore volume in the model, and Vtotal is the sum of ice and pore

volumes.  For dry snow considered here, any liquid volume is neglected.  Since the snow

density and ice geometry are known, the total volume of pore and ice is given by

ice
snow

ice
total VV

ρ
ρ

= . (6)

The total pore volume is now given by

icetotalpore VVV −= . (7)

Equation (7) gives the total pore volume for a sample with known density and ice

microstructure.  It is now required to apportion the pore volume to individual pore

elements of the geometric model.  The assumed pore shape is a rectangular cross section

revolved about the y axis centered in the ice.  3-D “washer” shaped pore elements result.

The total pore volume is given by the sum of all the pore element volumes
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The odd numbered elements represent grains and the even numbered elements represent

necks.  Equation (8) was developed so individual pore elements may be defined for each

grain and neck.  While other pore models exist, they do not lend themselves to the

microscopic approach proposed here.  In equation (8), it is assumed that rg(i)>>nl(i), the

reduction of rg(i) by nl(i) is neglected.  For a large bond to grain ratio of 0.5, equation (3)

gives a neck length that is 1/5 the size of the grain radius.  Of course, the relative size of

the neck to the grain will decrease with smaller bonds.  The location of the symmetry

plane, x, is now
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With the symmetric distance known, each pore width is found by

)(igi rxw −= for grains or )(ibi rxw −=  for necks. (10)

Each individual pore volume can now be calculated based on the ice geometry and wi,

using relationships found in equation (8).

An alternative method for finding pore volume can be achieved by weighting the

individual pore volume based on the relative size of the grains and necks.  After finding

the total pore volume using equations (5)-(7), the individual pore volume can be

calculated by
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pore
i

i
ipore V

r

r
V

∑
=)( , (11)

where ri is the grain radius for odd i and is the neck length for even i.  Both methods are

implemented in the research, and yield similar results.  The first approach is more

rigorous and is therefore preferred.  The equilibrium form ice and pore geometries are

now fully defined for a discretized model.  Pore elements associated with ice grain and

neck elements are also fully defined.

Governing Equations

The physical processes of snow metamorphism are very complex.  Heat and mass

move through the pore space while heat moves through the ice network.  These processes

are coupled by latent heat transfer and mass transport associated with phase change.  To

begin the development of a physical model, several simplifying assumptions are required.

These assumptions are not all inclusive for the problem (others will be presented later),

but are introduced here to begin the development.

Initial Assumptions

1. Heat conduction in the pore space can be neglected, so that only heat flow

through the ice network is considered.  This is a common assumption given the fact that

the thermal conductivity of saturated vapor at cold temperatures is two orders of

magnitude smaller than the thermal conductivity of pure ice (Incropera and

DeWitt,1985).
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2.  Saturated vapor, for a given temperature, exists everywhere in the pore

spaces.  Even though no measurements of relative humidity in pore spaces have been

published, this is a classic assumption given the large surface area of the ice available to

interact with the pore.

3.  The vapor saturated pore may be treated as an ideal gas.  This is a common

thermodynamic assumption for low pressure water vapor applications.  The snowpack

absolute pressure should be very close to atmospheric.

4.  The primary mass transport mechanism is vapor diffusion through the pore.

As discussed in chapter 1, substantial research has shown convection to be a significant

mass transport mechanism under very select conditions.  In general, convection is

neglected for metamorphism modeling.  Other diffusion mechanisms associated with the

ice, such as lattice, surface, and grain boundary, are considered small and neglected in the

primary development.

5.  Liquid water in the snow is not considered.  Solid ice and water vapor are the

only phases of water considered for dry snow.

Heat and Mass Fluxes Considered

Figure 5 shows graphically the heat and mass fluxes available given the geometry

and assumptions discussed.  Mass can diffuse vertically through the pore spaces as well

as to and from the ice surface during phase changes.  Heat can flow vertically through the

ice network as well as to or from the ice surface due to the latent heat exchange

associated with phase change.  The details of the phase change are addressed in a later

section of this chapter, but for now, we assume these processes are present.
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Movement of Vapor in the Pore Spaces

The diffusion of water vapor in the pore space is governed by density

(concentration) gradients as described by Fick’s Law,

ρ∇−=
�

DJ , (12)

where J is the molecular flux vector (kg/(sm2)), D is the water vapor diffusion coefficient

in air (m2/s), and ρ is the vapor density (kg/m3).  Using the ideal gas relationship for the

vapor, equation (12) becomes:






 ∇−∇−= T

RT

P
P

RT
DJ

��

2

1
, (13)

Ice Pore

Q

Qec Jec
J

Figure5.  Heat and mass flows during metamorphism.  Q represents the heat
flow through the ice network, Qec is the heat flow from evaporation or
condensation, J is the mass flow in the pore, Jec is the mass flow from
evaporation or condensation.
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where R is the water vapor gas constant (J/(kgK)), T is the pore temperature (K),  and P is

the pore pressure (Pa).  For pressure, P(T(x,y,z)), the chain rule yields

T
T

P
zyxTP ∇

∂
∂=∇

��
)),,(( . (14)

The equilibrium vapor pressure temperature dependence is given by the Clausius-

Clapeyron relationship, with the differential form (eg, Weast, 1985)

2RT

PL

T

P =
∂
∂

, (15)

where L is the water latent heat of sublimation (J/kg).  Substituting equations (14) and

(15) into (13) gives

T
RT

L

RT

P
DJ ∇


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�
1

2
. (16)

Since L/(RT) >> 1, equation (16) can be approximated as

P
RT

D
T

TR

PL
DJ ∇−=∇−=

��

32
. (17)

Equation (17) is a commonly used form of Fick’s Law for low pressure water vapor

treated as an ideal gas.

Water vapor will flow in the pore due to concentration gradients, but phase

changes resulting in the addition or removal of water vapor in the pore are also important.

Mass conservation for a flow with mass sources and sinks is given by

MSV
t

=⋅∇+
∂
∂

)(ρρ �
, (18)

where V is the vapor flow velocity (m/s), t is time (s), and MS is the mass supply or sink

from phase change (kg/m3s).  MS is identical to phase interaction from mixture theory,

except here, only one gaseous and one solid phase is considered.  The mass interactions
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are restricted to the solid and gas phases.  The mass supply term is coupled to the ice

phase through flux resulting from phase change (Jec).  The sign convention used here is

that mass added to the pore results in a numerically positive MS term.

Next, the spatial dimension of the problem is reduced.  Recalling the discussion of

equi-temperature and temperature gradient environments, isotropy is assumed to exist in

the horizontal plane.  In addition, only mass flux in the horizontal plane from mass

exchanges during phase change (figure 5) is considered.  The ability for mass to enter the

pore, diffuse to another area vertically in the microstructure, and then redeposit on the ice

is critical.  To account for the two dimensional nature of the problem, diffusion due to

phase change will be included in the mass source term.  As vapor enters the pore due to

sublimation from the ice, vapor flux is included in equation (18) as a mass source.  If

vapor is leaving the pore due to condensation on the ice, a mass sink is present in

equation (18).  This approach reduces the right hand side of equation (18) to one

dimension, but the process is still considered quasi-two dimensional due to the phase

change interactions.  Considering one dimensional diffusion (vertical y direction) and

mass sources and sinks due to phase change, equation (17) becomes

y

T

TR

DPL
J

∂
∂−=

32
. (19)

For one dimensional flow

JV =ρ , (20)

equation (18) becomes
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yt
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32

ρ
. (21)
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The unsteady term in equation (21) may be expressed as

t

T

Tt ∂
∂

∂
∂=

∂
∂ ρρ

. (22)

Using the ideal gas relationship and neglecting a small term (as was done for a similar

term in equation (16)), equation (22) becomes

t

P

RTt ∂
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∂ 1ρ

, (23)

but,
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. (24)

Using equations (24) and (15) in (23) leaves
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32

ρ
. (25)

After expanding equation (21) and substituting equation (25) into (21), the complete form

of the mass conservation relationship becomes

MS
y

T

Ty

T

RT

L

y

T

TR

DPL

t

T

TR

PL =












∂
∂−





∂
∂+

∂
∂−

∂
∂ 3

2

22

2

3232
. (26)

At this point, another simplifying assumption is made.  The process of mass

diffusion is assumed to be quasi-steady, neglecting the local derivative in equation (26).

Christon et al. (1990, 1994) calculated temperature gradient mass storage time constants

on the order of milliseconds, while the process of temperature gradient metamorphism is

on the order of several minutes (at least).  Neglecting storage terms is consistent with

Kuroiwa’s (1974) observation that temperature gradient metamorphism is a quasi-steady

process.  The temperature distribution, ice and pore geometry, and solid/vapor interfaces



38

will still change in time making the problem quasi-steady.  It is assumed that the time

constant associated with equi-temperature metamorphism is much longer than for

temperature gradient metamorphism since it is generally a much slower process.  The

numerical solution in the current study will allow for environment and response changes

in time, but neglect storage terms during each time increment.  During each time

increment, the vapor flows are assumed steady.  Pore temperature may then be

considered strictly a function of vertical position. Equation (26) was developed in full

form for completeness, but with a quasi-steady assumption it may be simplified to

MS
dy

dT

Tdy

dT

RT

L

dy

Td

TR

DPL =









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



+− 3

2

22

2

32
. (27)

  The pore mass continuity equation (27) is a non-linear, second order, ordinary

differential equation that is coupled to the ice phase through an interaction term.  While

no mathematical definition of the mass source term has yet been presented, the left hand

side of equation (27) is a function of pore temperature only.  As such, when the

description of MS is presented, the goal will be to include the pore temperature

distribution as a dependent variable.  Of course, properties of the ice will be included in

the interaction term, creating the desired coupling during metamorphism.

Heat Transfer in the Ice Network

Heat conduction through the solid ice phase is now considered.  Heat is allowed

to flow vertically (y direction) through the ice network, and horizontally (x direction) to

accommodate phase change.  As with the vapor derivation, a quasi-two dimensional

approach is used.  Vertical heat flow proceeds while heat enters or leaves the ice through
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phase changes at the lateral ice surface taken in the horizontal plane.  A differential ice

element is shown in figure 6, displaying the main heat flow in the ice network (Qy) and

heat flow due to phase change (dQec).

Heat due to phase change enters or leaves the ice depending upon whether it is

condensing or sublimating.  If water vapor is sublimating from the ice to the pore, latent

heat is leaving the ice.  The sign convention used here is consistent with the vapor source

previously defined, i.e., sublimation is considered positive as heat leaves the ice.  A

truncated Taylor series approximation for heat flux is given by

dy
y

Q
QQ y

ydyy ∂
∂

+=+ , (28)

where Q is the total conduction heat flow (W) for an area, A.  Fourier’s heat conduction

law is

dy

d
kAQy

θ−= , (29)

dy IcePore

Qy

Qy+dy

dQec

x

y

Figure 6.  Differential Ice Element.  Qy and Qy+dy are heat
fluxes in the y direction, dQec is the differential heat flow from
evaporation or condensation.
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where k is the ice thermal conductivity (W/mK), A is the cross sectional area for heat

diffusion (m2), and θ is the ice temperature (K).  Conservation of energy for the

differential element in figure 6 yields

iceiceecdyyy dVol
t

CdQQQ
∂
∂++= +
θρ , (30)

where dQec is the differential heat flow from sublimation or condensation (W), ρice is the

density of ice (kg/m3), C is the ice specific heat (J/kgK), and dVolice is differential

element volume (m3).  Using equation (29), equation (30) becomes

iceiceec dVol
t

CdQdy
y

kA
y ∂

∂+=





∂
∂

∂
∂ θρθ

. (31)

A quasi-steady assumption is now made, similar to the vapor development.  Lock (1990)

finds this limitation acceptable.  He applies the quasi-steady Stefan (1891) problem to a

wide class of ice problems involving phase change.  Lock (1990) terms this problem

“quasi-steady” because a moving phase change boundary must be accounted for, even

though the storage term in the energy equation is neglected.  Neglecting the ice heat

capacity, and expanding equation (31) leaves

ecdQdy
yy

A
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2

2

. (32)

Equation (32) is very similar to a variable fin geometry heat transfer problem

(Incropera and DeWitt, 1985), except it contains a phase change heat sink in place of

radiation or convection terms from a fin.  The differential phase change term may be

expressed in terms of the vapor flux leaving the surface, Jec, the latent heat of

sublimation, L, and a differential surface area available for phase change, dAec,
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( )ececec dAJLdQ = . (33)

It is important to notice that two area terms have been presented in this section, and these

areas are quite different.  A(y) is the ice cross sectional area, perpendicular to the y axis,

available for heat flow, while dAec is the differential surface area of the ice available for

phase change.  Assuming ice temperature, θ, is a function of y only, the energy balance

now becomes

dy

dA
LJ

dy

d

dy

dA
k

dy

d
kA ec

ec=+ θθ
2

2

. (34)

In the vapor conservation equation, we defined a vapor/ice interaction term in the form of

a mass source to and from the vapor during phase change.  In keeping with the same

approach, a heat source is now defined,

dy

dA
LJHS ec

ec= , (35)

where HS is a heat source term that is coupled to the pore through the phase change at the

boundary.  While not explicitly required, HS is defined here to show the heat

conservation analogy to the MS term in the vapor conservation relationship.  As will be

seen later, HS and MS are related by the mass flux, Jec, to and from the phase change

boundary. Jec will be a nonlinear function of ice and pore parameters, providing the

desired coupling between the solid and vapor phases.  The final form of the ice

conservation relationship becomes

kA

HS

dy

d

dy

dA

Ady

d =+ θθ 1
2

2

. (36)
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At this point, the heat and mass interaction terms need to be defined in detail.

They each will depend upon the size and direction of the phase change flux which is

dependent upon the microstructural geometry and current environmental conditions.  The

equi-temperature and temperature gradient environments result in different

microstructural geometries, therefore, the heat and mass interaction terms will be derived

separately for each condition.

Mass and Heat Source Interactions from Phase Change for Equilibrium Forms

Equations (27) and (36) contain mass and heat interaction terms (respectively).

The mass interaction, MS, is a mass supply to the pore from phase changes at the ice-pore

interface.  The heat interaction, HS, is a heat sink from the ice due to phase changes at the

ice-pore interface.  The phase change vapor flux in the horizontal direction, Jec (undefined

up to this point) is the coupling lynch pin between HS and MS.  The vapor flux leaving

the surface is dependent upon the physical processes and environmental factors in both

the pore and the ice.  In this section, the physics of phase change with a smooth rounded

(equilibrium form (Colbeck, 1983b)) microstructural geometry is presented.  The

equilibrium form of the microstructure is the primary limiting factor; no assumptions are

required relative to temperature gradient environment. In a following section, heat and

mass interaction terms will be derived for kinetic growth forms.

The metamorphism of smooth, rounded microstructure has been termed “equi-

temperature” (Sommerfeld and LaChapelle, 1970) because of its appearance in a

macroscopically isothermal environment.  Colbeck (1980) developed expressions for

metamorphism due to surface curvature alone.  He derived surface curvature relationships
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for this metamorphism, but found temperature gradients quickly overcome geometric

constraints.  At a given temperature, the vapor pressure over a convex surface is greater

than over a flat surface.  Conversely, concave surfaces have a lower vapor pressure than

for a flat surface at the same temperature.  Metamorphism can take place as water vapor

sublimates from rounded ice grains, travels by vapor diffusion through the pore, and

condenses on the concave intergranular necks.  Of course, for phase change and diffusion

to take place, temperature gradients must exist (even if very small), creating the

controversy surrounding the term “equi-temperature” metamorphism.  The term “radius-

of-curvature” metamorphism has been used to describe geometrically driven processes

(Colbeck, 1980) which may more precisely describe this process than the term “equi-

temperature” metamorphism.

Colbeck (1980) presented a rigorous thermodynamic derivation of Kelvin’s

equation given by







′

′=
sice

ice TR
PP

ρρ
σ2

exp , (37)

where Pice is the saturation vapor pressure (Pa) over the curved ice surface at a

temperature T′ (K), P′ is the saturation vapor pressure (Pa) over a flat ice surface at a

temperature T′, R is the water vapor gas constant (J/kgK), σ is the ice surface tension

(N/m), ρice is the density of ice (kg/m3), and ρs is the mean ice surface radius of curvature

(m) as defined in equation (4).  Kelvin’s equation describes the saturation vapor pressure

over curved surfaces. For convex surfaces, ρs is positive, and is negative for concave

surfaces.  The integrated form of the Clausius-Clapeyron equation (15) defines saturation

vapor pressure, P, as a function of temperature, T,
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where P0 is a reference vapor pressure (Pa) at reference temperature T0 (K).  We now

have an expression for saturation vapor pressure as a function of surface geometry and

another as a function of temperature.  The combined metamorphic effects of temperature

and geometry are vital to any realistic model.  Equations (37) and (38) may be combined

to get saturation vapor pressure over a curved ice surface at some arbitrary temperature T,

giving (Adams and Brown, 1983; Gubler, 1985)
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where Ts is the phase change temperature (K).  The phase change is assumed to take

place at a constant temperature, requiring solid and vapor very close to the phase change

boundary to be at the same temperature, Ts.  The derivation of surface and phase change

temperatures is presented in a later section of this chapter.  The temperature of phase

change must account for the heat and mass flux possible given the surrounding

conditions.  Since metamorphism takes place at all sub-freezing temperatures, no single

phase change temperature exists (unlike melt/freeze processes).

With temperature and geometric relationships for the vapor pressure of saturated

vapor, the flux due to phase change can be developed.  The vapor flux from phase change

due to vapor pressure differences between the ice surface and surrounding pore is given

by Fick’s law in the one dimensional form of equation (17)

dx

dP

RT

D
Jec v−= . (40)
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The vapor pressure differential in equation (40) is between the ice surface and

surrounding pore.  The ice surface vapor pressure is represented by equation (39), and the

pore vapor pressure is given by equation (38).  Flux is assumed positive as it enters the

pore (pore mass source).  Equation (40) may then be approximated by
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where  ∆x is the diffusion distance (m) between the ice surface and pore.  The flux due to

phase change can now be related to the mass and heat terms previously developed.

The mass source term, MS, in equation (27) represents the mass flow per unit

volume entering the pore.  Since this interaction term is from phase change, it is related to

Jec by

pore

ec
ec V

A
JMS = , (42)

where Vpore is the volume of the pore (m3).  Recall, the flux due to phase change is mass

flow per unit area of phase change, so the ice surface area undergoing phase change is

required for the pore mass balance.  Using equations (41) and (42) in (27), the highly

coupled nature of the problem becomes evident.  The ice physical constants, surface

geometry, temperature, and phase change temperature all appear in the pore mass

conservation relationship. After substituting equations (41) and (42) in (27) and

simplifying, the pore mass conservation (with equilibrium form interactions) equation

results



46

+











−





+













−

dy

dT

Tdy

dT

RT

L

dy

Td

RT

TTR

L
L

3

11
exp 2

22

2

2

0

0
11

exp
11

exp
2

exp
0

=























−−











−





∆ TTR

L

TTR

L

RTxV

A

sosoicepore

ec

ρρ
σ

. (43)

The heat source term, HS, in equation (36) also results from phase change and is

related to Jec.  The amount of heat lost from the ice during phase sublimation is related to

the phase change flux through equation (35).  The latent heat of sublimation, L, couples

the ice thermal conservation equation to the pore.  The heat conduction (with equilibrium

form interactions) equation becomes
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As with the pore equation, heat conservation results in non-linear coupling to pore

physical parameters and temperatures.  Equations (43) and (44) contain microstructural

ice and pore parameters, physical constants, ice and pore temperatures, and phase change

temperature.  Given a particular microstructure, the ice and pore temperatures are the

primary unknowns.  The phase change temperature, Ts, can be expressed in terms of the

ice and pore temperatures.
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Phase Change and Phase Change Temperature

To determine the temperature during the phase change process, the

thermodynamics of phase change must be examined.  Figure 7 shows the relationships of

heat, mass and temperature during sublimation near a flat ice surface.  qice is the heat flux

for phase change in the ice (W/m2), qpore is the heat flux for phase change in the pore

(W/m2), Jec is the vapor flux (kg/sm2) leaving the surface, θ(y) is the ice temperature (K)

away from the surface, T(y) is the pore temperature (K) away from the surface, and Ts is

the surface temperature.   Sublimation commences as the required latent heat is brought

to the surface by conduction.   In order for heat conduction to the surface to commence,

thermal gradients must exist from the ice and pore to the surface.  For sublimation shown

in figure 7, warmer ice temperatures and cooler pore temperatures result in heat

Ice Pore

Jec

Heatqporeqice

Mass

Temperatureθ(y) Ts T(y)

Phase Change Boundary

Figure 7.  Heat, mass and temperature relationships  between the ice and
pore during sublimation.

x

y
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conduction to the surface.  An energy balance at the surface yields (Lunardini, 1988;

Lock, 1990)

Lporeice qqq =− , (45)

where qL is the latent heat flux (W/m2) for sublimation. qL is positive during sublimation

and negative during condensation.  One dimensional heat conduction for phase change

gives

LmA
dx

dT
k
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d
k poreice �=


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
 +− θ

, (46)

where kice and kpore are thermal conductivities (W/mK), A is a conduction area (m2), m� is

the mass flow from phase change (kg/s), L is the latent heat of sublimation (J/kg), θ is the

ice temperature (K), and T is the pore temperature.  In the previous sections, it was

assumed ice and pore temperatures were a function of y only, but here, the thermal

gradient from the ice or pore interior to the surface is included.  The ice and pore

temperatures will be assumed fixed allowing the calculation of a surface or phase change

temperature as the primary variable.  Since the solid and vapor phases at the ice/pore

interface are at the same temperature, thermal gradients for both the ice and pore will

include phase change temperature, Ts.  If the phase change and conduction areas are

equal at the surface (Colbeck, 1980; Lock, 1990), equation (46) becomes

L
A

m

dx

dT
k

dx

d
k poreice

�
=+− θ

, (47)

but

A

m
J ec

�
= . (48)
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Substituting equation (40) for the phase change flux into (48) and (47) leaves,

( )iceporeporeice PP
xRT

DL

dx

dT
k

dx

d
k −

∆
−=+− θ

. (49)

If the expressions for pore and ice surface vapor pressure from equations (38) and (39)

are used in (49), the fully coupled form of the surface/phase change temperature

differential equation is

−+−
dx

dT
k

dx

d
k poreice
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0
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



∆ TTR

L

TTR

L

RTxRT

LDP

sosoice ρρ
σ

. (50)

The phase change conduction problem is coupled to the ice and pore through the ice and

pore temperatures, ice and pore geometries, and physical constants.

Heat and Mass Interactions from Phase Change for Kinetic Growth Forms

The differential equations developed so far make no distinction between equi-

temperature and temperature gradient thermal environments.  Certain restrictions on the

ice and pore geometry were presented in the first section of this chapter.  The ice

geometry described so far has been the smooth rounded equilibrium form common in an

equi-temperature environment.  At this point, it is appropriate to extend the theory to

include other geometric forms.  When significant temperature gradients exists, it has been

observed that large faceted crystals may develop quickly in the snowpack.  The presence

of these crystals has been attributed to lower material strength (Bradley et al., 1977a;
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Armstrong, 1980; Adams and Brown, 1982) and increased chance of avalanche release

(Bradley et al., 1977b; Satyawali, 1998; McElwaine, 2000).  These crystal forms are

often referred to as facets, temperature gradient metamorphism forms, kinetic forms,

recrystallized snow, and depth hoar.  As such, it is important for a reasonably accurate

metamorphism model to include such morphologies.

Faceted Geometry.  The hexagonal crystal structure of ice gives it unique

characteristics when grown from vapor at high rates.  While a detailed review of ice

crystal mechanics is not presented here, there are several sources available for the reader

to review if desired (Hobbs, 1974; Lock, 1990; Petrenko and Whitworth, 1999). Ice has a

hexagonal crystallographic structure, which is defined by three a-axes orientated at 120°

to one another on the "basal plane" with a c-axis defined as normal to that plane.

Perpendicular to the basal plane (parallel to the c-axis) are the six "prism faces".  The

basal and prism planes have been shown to be the dominant growth features, therefore,

their relative growth rates determine the primary geometric habit of the faceted crystal

(Lock, 1990). If c-axis growth dominates, prism-like structures appear.  Conversely,

plate-like structures form when a-axis growth is dominant.  For growth rates nearly equal,

striated “cups” may develop.  Early experiments by Nakaya et al.(1938) showed that

crystal habit varied with temperature and humidity.  While specific environmental and

crystal habit relationships were not developed, his experiments indicated that basic

crystal habit was primarily determined by temperature.  Several authors have determined

the effects of supersaturation and temperature on the growth of ice from the vapor, but

Kobayashi’s (1957; 1961) experiments rigorously confirmed primary crystal habit
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